找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVIII; Workshop, Bia?owie?a Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2020 Th

[復(fù)制鏈接]
樓主: sustained
41#
發(fā)表于 2025-3-28 17:30:11 | 只看該作者
42#
發(fā)表于 2025-3-28 20:17:45 | 只看該作者
Motiur Rahman,Noriatsu Matsui,Yukio IkemotoWe review the theory of Toeplitz extensions and their role in operator .-theory, including Kasparov’s bivariant .-theory. We then discuss the recent applications of Toeplitz algebras in the study of solid-state systems, focusing in particular on the bulk-edge correspondence for topological insulators.
43#
發(fā)表于 2025-3-29 00:46:09 | 只看該作者
44#
發(fā)表于 2025-3-29 04:39:33 | 只看該作者
Comments on Mechanisms of Release,In this paper we study one-point rank one commutative rings of difference operators. We find conditions on spectral data which specify such operators with periodic coefficients.
45#
發(fā)表于 2025-3-29 07:27:39 | 只看該作者
Dynamics of Rotors and FoundationsWe report on the trigonometric spin Ruijsenaars–Sutherland hierarchy derived recently by Poisson reduction of a bi-Hamiltonian hierarchy associated with free geodesic motion on the Lie group U(.). In particular, we give a direct proof of a previously stated result about the form of the second Poisson bracket in terms of convenient variables.
46#
發(fā)表于 2025-3-29 14:30:52 | 只看該作者
Dynamics of Science-Based InnovationWe describe sufficient maximality conditions for the classes of graph surfaces on two-step Carnot groups with sub-Lorentzian structure. In particular, we introduce a non-holonomic notion of variation of the area functional.
47#
發(fā)表于 2025-3-29 16:29:48 | 只看該作者
https://doi.org/10.1007/978-3-540-88831-4We consider certain degenerations of trigonal curves and hyperelliptic curves, which we call one step degeneration. We compute the limits of corresponding quasi-periodic solutions using the Sato Grassmannian. The mixing of solitons and quasi-periodic solutions is clearly visible in the obtained solutions.
48#
發(fā)表于 2025-3-29 23:18:09 | 只看該作者
49#
發(fā)表于 2025-3-30 03:37:27 | 只看該作者
50#
發(fā)表于 2025-3-30 06:40:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
津市市| 罗田县| 朔州市| 延长县| 吉隆县| 延庆县| 墨竹工卡县| 仲巴县| 杭州市| 类乌齐县| 柳州市| 甘德县| 黄浦区| 萨迦县| 镇平县| 农安县| 南溪县| 连山| 平江县| 比如县| 隆尧县| 梓潼县| 藁城市| 象山县| 富顺县| 陆川县| 峨眉山市| 剑河县| 靖边县| 泾源县| 龙胜| 平泉县| 镇原县| 阿荣旗| 台南县| 阿合奇县| 准格尔旗| 湘潭市| 揭西县| 镇平县| 公主岭市|