找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in PDE’s; Giovanna Citti,Maria Manfredini,Francesco Uguzzoni Conference proceedings 2015 Springer International Publishi

[復制鏈接]
樓主: 添加劑
51#
發(fā)表于 2025-3-30 10:34:32 | 只看該作者
Srinivasan Arjun Tekalur,Arun Shuklaent estimates for non-negative solutions of?(1) in the spirit of a 2005 paper by Yan Yan Li and Louis Nirenberg. The second part of the note focuses on entire solutions of?(1) with semilinear term . satisfying a Keller-Osserman type integrability condition.
52#
發(fā)表于 2025-3-30 12:40:01 | 只看該作者
Conference proceedings 2015heir discipline of research, providing readers an overview of recent progress and future research trends in PDEs. In particular, the volume collects significant results for sub-elliptic equations, potential theory and diffusion equations, with an emphasis on comparing different methodologies and on their implications for theory and applications.?.
53#
發(fā)表于 2025-3-30 16:36:12 | 只看該作者
54#
發(fā)表于 2025-3-30 22:31:26 | 只看該作者
55#
發(fā)表于 2025-3-31 01:54:35 | 只看該作者
A Quantitative Lusin Theorem for Functions in BV,at least one point of .. In this note we follow the proof given in the Appendix of DiBenedetto and Vespri (Arch. Ration. Mech. Anal. ., 247–309, 1995) so we are able to use only a 1-dimensional Poincaré inequality.
56#
發(fā)表于 2025-3-31 06:44:46 | 只看該作者
57#
發(fā)表于 2025-3-31 12:34:42 | 只看該作者
,,-Parabolic Regularity and Non-degenerate Ornstein-Uhlenbeck Type Operators,appearing in such estimates from the parabolicity constant. The proof requires the use of the stochastic integral when . is different from 2. Finally we extend our estimates to parabolic equations involving non-degenerate Ornstein-Uhlenbeck type operators.
58#
發(fā)表于 2025-3-31 16:13:59 | 只看該作者
,A Few Recent Results on Fully Nonlinear PDE’s,ent estimates for non-negative solutions of?(1) in the spirit of a 2005 paper by Yan Yan Li and Louis Nirenberg. The second part of the note focuses on entire solutions of?(1) with semilinear term . satisfying a Keller-Osserman type integrability condition.
59#
發(fā)表于 2025-3-31 18:51:15 | 只看該作者
60#
發(fā)表于 2025-4-1 01:31:06 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 05:30
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吉林市| 满洲里市| 铁岭市| 南雄市| 定结县| 永定县| 庄浪县| 沽源县| 江城| 南平市| 广宁县| 墨脱县| 古交市| 奉新县| 临澧县| 河源市| 增城市| 济源市| 富裕县| 太保市| 宝鸡市| 壤塘县| 衡阳市| 太仓市| 龙陵县| 建阳市| 剑川县| 梧州市| 扶绥县| 瑞丽市| 深泽县| 浪卡子县| 天镇县| 大余县| 广河县| 阳泉市| 丹东市| 城口县| 南投县| 曲周县| 乌拉特后旗|