找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in PDE’s; Giovanna Citti,Maria Manfredini,Francesco Uguzzoni Conference proceedings 2015 Springer International Publishi

[復制鏈接]
樓主: 添加劑
31#
發(fā)表于 2025-3-26 21:04:26 | 只看該作者
32#
發(fā)表于 2025-3-27 04:19:42 | 只看該作者
,H?lder Regularity of the Gradient for Solutions of Fully Nonlinear Equations with Sub Linear First Using an improvement of flatness Lemma, we prove H?lder regularity of the gradient of solutions with higher order term a uniformly elliptic fully nonlinear operator and with Hamiltonian which is sub-linear. The result is based on some general compactness results.
33#
發(fā)表于 2025-3-27 07:18:02 | 只看該作者
34#
發(fā)表于 2025-3-27 12:53:58 | 只看該作者
Gagliardo-Nirenberg Inequalities for Horizontal Vector Fields in the Engel Group and in the Seven-DRecently, Bourgain and Brezis and Lanzani and Stein considered a class of div-curl inequalities in de Rham’s complex. In this note we prove the natural counterpart of these inequalities for horizontal vector fields in the Engel group and in the seven-dimensional quaternionic Heisenberg group.
35#
發(fā)表于 2025-3-27 15:19:33 | 只看該作者
Regularity of the Free Boundary in Problems with Distributed Sources,In this survey paper we describe some recent progress on the analysis of two phase free boundary problems governed by elliptic inhomogeneous equations. We also discuss several open questions.
36#
發(fā)表于 2025-3-27 20:37:10 | 只看該作者
On the Hardy Constant of Some Non-convex Planar Domains,/16 was obtained, there has been a substantial interest on computing or estimating the Hardy constant of planar domains. In Barbatis and Tertikas (J Funct Anal 266:3701–3725, 2014) we have determined the Hardy constant of an arbitrary quadrilateral in the plane. In this work we continue our investig
37#
發(fā)表于 2025-3-27 22:50:21 | 只看該作者
38#
發(fā)表于 2025-3-28 02:16:39 | 只看該作者
39#
發(fā)表于 2025-3-28 09:10:26 | 只看該作者
40#
發(fā)表于 2025-3-28 11:27:38 | 只看該作者
,Sum Operators and Fefferman–Phong Inequalities,) by Franchi, Perez and Wheeden. Then we prove an embedding inequality of Fefferman–Phong type. As an application we give a unique continuation result for non negative solutions of some subelliptic equations.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泊头市| 洛隆县| 镇远县| 顺平县| 牟定县| 迭部县| 扎囊县| 玉溪市| 屏山县| 澎湖县| 肥城市| 扶风县| 板桥市| 天津市| 墨脱县| 临漳县| 天长市| 临武县| 宜昌市| 高淳县| 平昌县| 顺义区| 类乌齐县| 垣曲县| 柏乡县| 江陵县| 庆元县| 张北县| 聊城市| 集贤县| 安化县| 新平| 潢川县| 涞源县| 时尚| 大姚县| 青海省| 沾益县| 进贤县| 柯坪县| 南通市|