找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Inverse Problems and PDE Control; Christopher B. Croke,Michael S. Vogelius,Irena Las Conference proceedings 2004 Spri

[復制鏈接]
樓主: 黑暗社會
41#
發(fā)表于 2025-3-28 15:16:01 | 只看該作者
42#
發(fā)表于 2025-3-28 22:26:54 | 只看該作者
Ray Transform and Some Rigidity Problems for Riemannian Metrics,arises in the linearization of the boundary rigidity problem which is discussed in Section 1. In Section 2 we introduce a class of Riemannian manifolds, convex non-trapping manifolds (CNTM), for which the ray transform can be defined in a very natural way. In the case of positive rank tensor fields,
43#
發(fā)表于 2025-3-29 00:05:34 | 只看該作者
The Cauchy Data and the Scattering Relation,e inverse problem of determining a metric of a Riemannian manifold (with boundary) from the dynamic Dirichlet-to-Neumann map associated with the wave equation. Although these results are very satisfactory it requires too much information. By just looking at the singularities of the dynamic Dirichlet
44#
發(fā)表于 2025-3-29 03:42:13 | 只看該作者
,Inverse Resonance Problem for ?2-Symmetric Analytic Obstacles in the Plane,les. It is the analogue for exterior domains of the proof that a mirror symmetric bounded simply connected analytic plane domain is determined by its Dirichlet eigenvalues. The proof uses ‘interior/exterior duality’ to simplify the argument.
45#
發(fā)表于 2025-3-29 08:32:29 | 只看該作者
46#
發(fā)表于 2025-3-29 12:50:32 | 只看該作者
el of its numerous - searchers. The decision to organize the 1908 International Congress of Mathematicians in Rome (after those in Paris and Heidelberg) confirmed this position. Qualified Italian universities were permanently included in the tour organized for young mathematicians’ improvement. Even
47#
發(fā)表于 2025-3-29 15:58:32 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 00:48
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
马关县| 班玛县| 宁德市| 晋宁县| 渝北区| 东平县| 正镶白旗| 临泉县| 西乡县| 贡山| 安义县| 新营市| 海丰县| 江城| 湘潭县| 葵青区| 福州市| 北流市| 清河县| 密山市| 新邵县| 从江县| 石景山区| 合山市| 卫辉市| 东光县| 讷河市| 晋中市| 五原县| 抚松县| 南昌县| 赞皇县| 高淳县| 疏勒县| 蓝山县| 砚山县| 揭西县| 获嘉县| 屏边| 旺苍县| 东阿县|