找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Inverse Problems and PDE Control; Christopher B. Croke,Michael S. Vogelius,Irena Las Conference proceedings 2004 Spri

[復(fù)制鏈接]
樓主: 黑暗社會
21#
發(fā)表于 2025-3-25 04:22:27 | 只看該作者
22#
發(fā)表于 2025-3-25 11:30:26 | 只看該作者
23#
發(fā)表于 2025-3-25 14:54:47 | 只看該作者
Norman H. Anderson,Margaret A. Armstrongint will be the boundary rigidity and conjugacy rigidity problems. These problems are connected to many other problems (Mostow-Margulis type rigidity, isopectral problems, isoperimetric inequalities etc.). We will restrict our attention to those results that have a direct connection to the boundary
24#
發(fā)表于 2025-3-25 18:35:08 | 只看該作者
25#
發(fā)表于 2025-3-25 21:04:06 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:23 | 只看該作者
Sayan Ray,Sanjoy Sanyal,Pulak Senguptae inverse problem of determining a metric of a Riemannian manifold (with boundary) from the dynamic Dirichlet-to-Neumann map associated with the wave equation. Although these results are very satisfactory it requires too much information. By just looking at the singularities of the dynamic Dirichlet
27#
發(fā)表于 2025-3-26 06:06:05 | 只看該作者
28#
發(fā)表于 2025-3-26 09:23:44 | 只看該作者
29#
發(fā)表于 2025-3-26 16:39:42 | 只看該作者
les. It is the analogue for exterior domains of the proof that a mirror symmetric bounded simply connected analytic plane domain is determined by its Dirichlet eigenvalues. The proof uses ‘interior/exterior duality’ to simplify the argument.
30#
發(fā)表于 2025-3-26 20:07:26 | 只看該作者
The Case for Differential Geometry in the Control of Single and Coupled PDEs: The Structural Acoustd as follows: we intend to provide a relatively updated survey (subject to space limitations) of results on . and . of certain general classes of single Partial Differential Equations as well as of classes of systems of coupled PDEs (in dimension strictly greater than one), that have become available in recent years ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南靖县| 桦甸市| 古交市| 汾阳市| 万州区| 陵水| 永兴县| 彝良县| 比如县| 康乐县| 琼中| 什邡市| 江达县| 工布江达县| 和林格尔县| 宁津县| 岱山县| 安新县| 永济市| 介休市| 保康县| 灵石县| 慈溪市| 大新县| 阿合奇县| 会宁县| 丁青县| 济南市| 汉沽区| 莱芜市| 弥勒县| 天台县| 大悟县| 壤塘县| 张家川| 津南区| 保亭| 临夏市| 丹凤县| 宽城| 江山市|