找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Algebra and Number Theory; Fedor Bogomolov,Yuri Tschinkel Textbook 2005 Birkh?user Boston 2005 Area.Cohomology.Volume

[復(fù)制鏈接]
樓主: notable
21#
發(fā)表于 2025-3-25 04:11:51 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:39 | 只看該作者
Motivic approach to limit sheaves,We propose a motivic analog of limit mixed Hodge structures. Working in the context of triangulated categories of motivic objects on schemes we introduce and study a limit motive functor and a motivic vanishing cycle sheaf.
23#
發(fā)表于 2025-3-25 14:11:03 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:20:28 | 只看該作者
Durchführung von Miranda-Evaluierungen surfaces which are rigid, i.e., without nontrivial deformations, and which admit an unramified covering which is isomorphic to a product of curves of genus at least 2..In this case the moduli space of surfaces homeomorphic to the given surface consists either of a unique real point, or of a pair of
26#
發(fā)表于 2025-3-26 00:50:58 | 只看該作者
Grzegorz Domański,Yakov Kuzyakov,Karl Stahr for these moduli spaces can often be constructed using the techniques of Geometric Invariant Theory. In genus two, this boils down to the invariant theory of binary sextics, which was developed systematically in the 19th century.
27#
發(fā)表于 2025-3-26 07:30:37 | 只看該作者
https://doi.org/10.1007/978-3-030-75158-6 .(., ?) vs. .(., ?) flat connections and character varieties for curves, respectively. Several new results and conjectures and their relations to works of Hitchin, Gothen, Garsia-Haiman and Earl-Kirwan are explained. These use the representation theory of finite groups of Lie-type via the arithmeti
28#
發(fā)表于 2025-3-26 10:16:43 | 只看該作者
29#
發(fā)表于 2025-3-26 15:07:02 | 只看該作者
30#
發(fā)表于 2025-3-26 19:07:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德兴市| 鄂伦春自治旗| 革吉县| 安阳县| 曲阜市| 三明市| 云梦县| 方正县| 洱源县| 酉阳| 航空| 靖江市| 兴安盟| 修文县| 遂川县| 资溪县| 成安县| 遵义县| 政和县| 象州县| 德令哈市| 通许县| 怀仁县| 桦川县| 库车县| 德兴市| 宾阳县| 商城县| 堆龙德庆县| 浪卡子县| 通河县| 乌兰浩特市| 云林县| 平遥县| 奈曼旗| 穆棱市| 涟水县| 榆树市| 侯马市| 琼中| 吴川市|