找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Algebra and Number Theory; Fedor Bogomolov,Yuri Tschinkel Textbook 2005 Birkh?user Boston 2005 Area.Cohomology.Volume

[復(fù)制鏈接]
樓主: notable
11#
發(fā)表于 2025-3-23 11:41:27 | 只看該作者
Individualistic Approaches to SuicideWe propose a conjecture combining the Mordell-Lang conjecture with an important special case of the André-Oort conjecture, and explain how existing results imply evidence for it.
12#
發(fā)表于 2025-3-23 17:31:10 | 只看該作者
https://doi.org/10.1007/978-981-10-1825-1We propose a motivic analog of limit mixed Hodge structures. Working in the context of triangulated categories of motivic objects on schemes we introduce and study a limit motive functor and a motivic vanishing cycle sheaf.
13#
發(fā)表于 2025-3-23 20:26:41 | 只看該作者
Material Safety Specifications,Let . be a classical Lie group and . a maximal parabolic subgroup. We describe a quantum Pieri rule which holds in the small quantum cohomology ring of .. We also give a presentation of this ring in terms of special Schubert class generators and relations. This is a survey paper which reports on joint work with Anders S. Buch and Andrew Kresch.
14#
發(fā)表于 2025-3-23 22:44:06 | 只看該作者
15#
發(fā)表于 2025-3-24 02:38:11 | 只看該作者
16#
發(fā)表于 2025-3-24 07:26:04 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:53 | 只看該作者
18#
發(fā)表于 2025-3-24 18:08:07 | 只看該作者
,Ax-Kochen-Er?ov Theorems for ,-adic integrals and motivic integration,We express the Lefschetz number of iterates of the monodromy of a function on a smooth complex algebraic variety in terms of the Euler characteristic of a space of truncated arcs.
19#
發(fā)表于 2025-3-24 19:57:58 | 只看該作者
Nested sets and Jeffrey-Kirwan residues,For the complement of a hyperplane arrangement we construct a dual homology basis to the no-broken-circuit basis of cohomology. This is based on the theory of wonderful embeddings and nested sets developed in [4]. Our result allows us to express the so-called Jeffrey-Kirwan residues in terms of integration on some explicit geometric cycles.
20#
發(fā)表于 2025-3-25 01:21:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伽师县| 高要市| 荥经县| 南陵县| 横峰县| 阳信县| 诸暨市| 商丘市| 乐清市| 保定市| 沙田区| 綦江县| 全椒县| 合水县| 民权县| 屏东县| 临武县| 石柱| 桃源县| 三都| 法库县| 普宁市| 石林| 铜梁县| 股票| 玉林市| 长沙县| 霍州市| 满洲里市| 南平市| 天柱县| 新河县| 洪江市| 吉林省| 铁岭县| 蕲春县| 双江| 连山| 贡嘎县| 如东县| 辽宁省|