找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Mechanics and Its Applications; Weipeng Hu,Chuan Xiao,Zichen Deng Book 2023 The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: hedonist
21#
發(fā)表于 2025-3-25 06:40:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:40:34 | 只看該作者
23#
發(fā)表于 2025-3-25 13:06:32 | 只看該作者
24#
發(fā)表于 2025-3-25 16:08:54 | 只看該作者
Structure-Preserving Analysis of the Dynamics of Micro/Nano Systems,n as an example, the nonlinear behaviors of the nanotube’s vibration contained in the nano-injection system are difficult to be reproduced, which is crucial for the stable operation of the nano-injection. In this chapter, the chaotic characteristics, the quality factor as well as the axial dynamic b
25#
發(fā)表于 2025-3-25 22:23:08 | 只看該作者
26#
發(fā)表于 2025-3-26 02:48:49 | 只看該作者
https://doi.org/10.1007/978-981-19-7435-9Geometric Mechanics; Hamiltonian; Symmetry; Dissipation; Astrodynamics; Structure-preserving; Conservation
27#
發(fā)表于 2025-3-26 05:00:10 | 只看該作者
David Powell,Rosalie Liccardo Pacula St?rmer–Verlet scheme for the mathematical pendulum model as examples, the vitality of geometric mechanics is illustrated. Then, two main mathematical ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics.
28#
發(fā)表于 2025-3-26 09:56:16 | 只看該作者
29#
發(fā)表于 2025-3-26 16:04:48 | 只看該作者
DPE Networks and Evolutionary Dynamicseveral applications of which are presented in this chapter. Generalizing the concept of reversibility to high-dimensional systems, the bisymplectic structure, named as the multi-symplectic structure of the infinite-dimensional Hamiltonian system with several conservation laws are presented. For the
30#
發(fā)表于 2025-3-26 17:24:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮安市| 东至县| 韩城市| 泰宁县| 西贡区| 敦化市| 怀远县| 广宁县| 海南省| 阳高县| 德江县| 天峻县| 佛山市| 隆德县| 林口县| 满洲里市| 湖口县| 樟树市| 颍上县| 绍兴市| 大石桥市| 神木县| 社旗县| 井陉县| 秭归县| 琼结县| 建德市| 区。| 裕民县| 德化县| 万安县| 水城县| 武强县| 翁牛特旗| 辽宁省| 襄汾县| 焉耆| 桂东县| 闵行区| 华亭县| 绥滨县|