找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Mechanics and Its Applications; Weipeng Hu,Chuan Xiao,Zichen Deng Book 2023 The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: hedonist
11#
發(fā)表于 2025-3-23 13:07:52 | 只看該作者
David Powell,Rosalie Liccardo Paculal ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics. Finally, several important concepts associated with the geometric integration are presented.
12#
發(fā)表于 2025-3-23 16:59:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:28:54 | 只看該作者
15#
發(fā)表于 2025-3-24 04:51:50 | 只看該作者
Introduction,l ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics. Finally, several important concepts associated with the geometric integration are presented.
16#
發(fā)表于 2025-3-24 06:54:31 | 只看該作者
Cardiac: Coronary CTA in Obese Patientsmulti-symplectic method are illustrated, which provides a new way to investigate the local nonlinear properties and reproduce the local dissipation of the non-conservative infinite-dimensional system.
17#
發(fā)表于 2025-3-24 11:23:59 | 只看該作者
18#
發(fā)表于 2025-3-24 17:45:10 | 只看該作者
Book 2023eometric mechanics. The main content of this book is based on the last 20 years’ jobs of the authors. All physical processes can be formulated as the?Hamiltonian form with the energy conservation law as well as the symplectic?structure if all dissipative effects are ignored. On the one hand, the imp
19#
發(fā)表于 2025-3-24 19:57:18 | 只看該作者
Introduction, St?rmer–Verlet scheme for the mathematical pendulum model as examples, the vitality of geometric mechanics is illustrated. Then, two main mathematical ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics.
20#
發(fā)表于 2025-3-24 23:16:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四川省| 平原县| 榕江县| 桐梓县| 星子县| 嘉荫县| 鞍山市| 台湾省| 辉县市| 独山县| 永定县| 罗江县| 三河市| 兖州市| 博兴县| 瑞安市| 淳化县| 通化县| 安远县| 揭阳市| 武定县| 新乐市| 盘锦市| 东丰县| 岳阳市| 石泉县| 镇康县| 米脂县| 峨眉山市| 泾川县| 邮箱| 定州市| 阜宁县| 肇东市| 朝阳县| 彰化县| 页游| 苗栗市| 崇信县| 大同县| 天津市|