找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Mechanics and Its Applications; Weipeng Hu,Chuan Xiao,Zichen Deng Book 2023 The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: hedonist
11#
發(fā)表于 2025-3-23 13:07:52 | 只看該作者
David Powell,Rosalie Liccardo Paculal ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics. Finally, several important concepts associated with the geometric integration are presented.
12#
發(fā)表于 2025-3-23 16:59:25 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:28:54 | 只看該作者
15#
發(fā)表于 2025-3-24 04:51:50 | 只看該作者
Introduction,l ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics. Finally, several important concepts associated with the geometric integration are presented.
16#
發(fā)表于 2025-3-24 06:54:31 | 只看該作者
Cardiac: Coronary CTA in Obese Patientsmulti-symplectic method are illustrated, which provides a new way to investigate the local nonlinear properties and reproduce the local dissipation of the non-conservative infinite-dimensional system.
17#
發(fā)表于 2025-3-24 11:23:59 | 只看該作者
18#
發(fā)表于 2025-3-24 17:45:10 | 只看該作者
Book 2023eometric mechanics. The main content of this book is based on the last 20 years’ jobs of the authors. All physical processes can be formulated as the?Hamiltonian form with the energy conservation law as well as the symplectic?structure if all dissipative effects are ignored. On the one hand, the imp
19#
發(fā)表于 2025-3-24 19:57:18 | 只看該作者
Introduction, St?rmer–Verlet scheme for the mathematical pendulum model as examples, the vitality of geometric mechanics is illustrated. Then, two main mathematical ways to formulate dynamic systems: Lagrangian mechanics and Hamiltonian mechanics are reviewed, which is the foundation of the geometric mechanics.
20#
發(fā)表于 2025-3-24 23:16:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
句容市| 临西县| 东丰县| 来安县| 宜兰市| 故城县| 安丘市| 凤翔县| 工布江达县| 开阳县| 永年县| 南平市| 洛扎县| 襄垣县| 永顺县| 辽中县| 正定县| 贵德县| 武威市| 潮州市| 西乌珠穆沁旗| 鄂伦春自治旗| 如东县| 广德县| 霍山县| 沁源县| 河池市| 农安县| 新密市| 卫辉市| 集安市| 江西省| 吉首市| 白朗县| 庆云县| 林芝县| 凤阳县| 文登市| 大新县| 嘉黎县| 刚察县|