找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Invariant Theory for Polarized Curves; Gilberto Bini,Fabio Felici,Filippo Viviani Book 2014 Springer International Publishing Sw

[復(fù)制鏈接]
樓主: 閃爍
41#
發(fā)表于 2025-3-28 15:13:10 | 只看該作者
https://doi.org/10.1007/978-3-319-11337-114L24,14H40,14C05,14H10,14D23,14B05; ; Compactified Jacobians; Geometric invariant theory; Hilbert and C
42#
發(fā)表于 2025-3-28 19:26:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:54:35 | 只看該作者
44#
發(fā)表于 2025-3-29 05:49:37 | 只看該作者
Introduction,y Mumford and his co-authors (see [MFK94]), was the construction of the moduli space .. of smooth curves of genus .?≥?2 and its compactification . via . (i.e. connected nodal projective curves with finite automorphism group), carried out by Mumford [Mum77] and Gieseker [Gie82].
45#
發(fā)表于 2025-3-29 09:20:40 | 只看該作者
46#
發(fā)表于 2025-3-29 11:46:14 | 只看該作者
Appendix: Positivity Properties of Balanced Line Bundles,The results obtained here are applied in this manuscript only for quasi-wp-stable curves; however we decided to present these results in the Gorenstein case for two reasons: firstly, we think that these results are interesting in their own (in particular we will generalize our proofs extend without
47#
發(fā)表于 2025-3-29 18:13:25 | 只看該作者
0075-8434 w semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively..978-3-319-11336-4978-3-319-11337-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
48#
發(fā)表于 2025-3-29 21:21:30 | 只看該作者
Book 2014 values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively..
49#
發(fā)表于 2025-3-30 01:57:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:45:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金溪县| 金华市| 田阳县| 思南县| 灵宝市| 白城市| 富阳市| 宁南县| 青铜峡市| 泸定县| 双流县| 襄垣县| 桃江县| 疏勒县| 任丘市| 泸州市| 莱西市| 水富县| 耿马| 亳州市| 白河县| 张家港市| 宜都市| 金川县| 顺平县| 凤凰县| 苍梧县| 阿坝| 屯门区| 桑植县| 宜州市| 乃东县| 渑池县| 辽中县| 绩溪县| 彰化市| 邯郸市| 韩城市| 桃江县| 饶阳县| 新河县|