找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Invariant Theory for Polarized Curves; Gilberto Bini,Fabio Felici,Filippo Viviani Book 2014 Springer International Publishing Sw

[復(fù)制鏈接]
樓主: 閃爍
41#
發(fā)表于 2025-3-28 15:13:10 | 只看該作者
https://doi.org/10.1007/978-3-319-11337-114L24,14H40,14C05,14H10,14D23,14B05; ; Compactified Jacobians; Geometric invariant theory; Hilbert and C
42#
發(fā)表于 2025-3-28 19:26:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:54:35 | 只看該作者
44#
發(fā)表于 2025-3-29 05:49:37 | 只看該作者
Introduction,y Mumford and his co-authors (see [MFK94]), was the construction of the moduli space .. of smooth curves of genus .?≥?2 and its compactification . via . (i.e. connected nodal projective curves with finite automorphism group), carried out by Mumford [Mum77] and Gieseker [Gie82].
45#
發(fā)表于 2025-3-29 09:20:40 | 只看該作者
46#
發(fā)表于 2025-3-29 11:46:14 | 只看該作者
Appendix: Positivity Properties of Balanced Line Bundles,The results obtained here are applied in this manuscript only for quasi-wp-stable curves; however we decided to present these results in the Gorenstein case for two reasons: firstly, we think that these results are interesting in their own (in particular we will generalize our proofs extend without
47#
發(fā)表于 2025-3-29 18:13:25 | 只看該作者
0075-8434 w semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively..978-3-319-11336-4978-3-319-11337-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
48#
發(fā)表于 2025-3-29 21:21:30 | 只看該作者
Book 2014 values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively..
49#
發(fā)表于 2025-3-30 01:57:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:45:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德保县| 碌曲县| 额尔古纳市| 涟源市| 南华县| 中牟县| 城市| 张家界市| 田林县| 神农架林区| 长春市| 浮山县| 应用必备| 闻喜县| 彰化市| 措勤县| 徐水县| 巨鹿县| 新乡市| 泰来县| 青龙| 当涂县| 高阳县| 江津市| 永兴县| 玉环县| 乌鲁木齐县| 屯昌县| 漳州市| 米林县| 宁城县| 尉犁县| 正阳县| 鄂温| 赞皇县| 闽清县| 龙门县| 岗巴县| 平阳县| 句容市| 将乐县|