找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Invariant Theory for Polarized Curves; Gilberto Bini,Fabio Felici,Filippo Viviani Book 2014 Springer International Publishing Sw

[復(fù)制鏈接]
樓主: 閃爍
31#
發(fā)表于 2025-3-26 22:51:08 | 只看該作者
A Criterion of Stability for Tails,In this chapter we would like to state a criterion of stability for tails based on the Hilbert-Mumford criterion and on the parabolic group. Let . with .?>?2(2. ? 2), where . is the union of two curves .. and .. (of degrees ..,?.. and genus ..,?..) that intersect each other transversally in a single point ..
32#
發(fā)表于 2025-3-27 03:37:06 | 只看該作者
33#
發(fā)表于 2025-3-27 06:43:29 | 只看該作者
Semistable, Polystable and Stable Points (Part I),The aim of this chapter is to describe the points of Hilb. that are Hilbert or Chow semistable, polystable and stable for . The range . will be investigated later.
34#
發(fā)表于 2025-3-27 11:45:15 | 只看該作者
Stability of Elliptic Tails,In this chapter, we will use the criterion of stability for tails (Proposition?.) in order to study the stability of elliptic curves for .. We notice that in this range—by the basic inequality (.)—it suffices to consider the elliptic curves of degree 4.
35#
發(fā)表于 2025-3-27 16:00:21 | 只看該作者
36#
發(fā)表于 2025-3-27 19:26:48 | 只看該作者
37#
發(fā)表于 2025-3-27 23:09:47 | 只看該作者
Extra Components of the GIT Quotient,So far, we have considered the action of . over Hilb., and we have restricted our attention to . and ., the Chow or Hilbert semistable loci consisting of connected curves. It is very natural to ask if there are Chow or Hilbert semistable points . with . not connected. In this chapter we will answer this question.
38#
發(fā)表于 2025-3-28 03:49:00 | 只看該作者
39#
發(fā)表于 2025-3-28 07:03:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:43:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祥云县| 五莲县| 县级市| 新河县| 江城| 汉中市| 扎赉特旗| 息烽县| 营山县| 沙湾县| 阳高县| 梨树县| 兴和县| 沙洋县| 黑水县| 九龙县| 西昌市| 新泰市| 彭泽县| 建瓯市| 高雄县| 托里县| 罗平县| 永定县| 潼关县| 宜阳县| 社会| 资兴市| 鸡泽县| 宣威市| 肇东市| 竹北市| 宁国市| 班戈县| 鄂伦春自治旗| 广灵县| 永丰县| 诸城市| 淳化县| 稷山县| 桦南县|