找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Harmonic Analysis III; Integral Representat Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2023 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 46574|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:41:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Harmonic Analysis III
副標(biāo)題Integral Representat
編輯Dorina Mitrea,Irina Mitrea,Marius Mitrea
視頻videohttp://file.papertrans.cn/384/383520/383520.mp4
概述Presents a comprehensive novel theory for singular integral operators in optimal geometrical settings.A great deal of applications are explored in detail.The key results are new, with complete, essent
叢書名稱Developments in Mathematics
圖書封面Titlebook: Geometric Harmonic Analysis III; Integral Representat Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2023 The Editor(s) (if applicable) and
描述.This monograph presents a comprehensive, self-contained, and novel approach to the Divergence Theorem through five progressive volumes. Its ultimate aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. The text is intended for researchers, graduate students, and industry professionals interested in applications of harmonic analysis and geometric measure theory to complex analysis, scattering, and partial differential equations..Volume III is concerned with integral representation formulas for nullsolutions of elliptic PDEs, Calderón-Zygmund theory for singular integral operators, Fatou type theorems for systems of elliptic PDEs, and applications to acoustic and electromagnetic scattering. Overall, this amounts to a powerful and nuanced theory developed on uniformly rectifiable sets, which builds on the work of many predecessors...?.
出版日期Book 2023
關(guān)鍵詞Divergence theorem; integration by parts; Stokes theorem; singular integral operators; function spaces; b
版次1
doihttps://doi.org/10.1007/978-3-031-22735-6
isbn_softcover978-3-031-22737-0
isbn_ebook978-3-031-22735-6Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometric Harmonic Analysis III影響因子(影響力)




書目名稱Geometric Harmonic Analysis III影響因子(影響力)學(xué)科排名




書目名稱Geometric Harmonic Analysis III網(wǎng)絡(luò)公開度




書目名稱Geometric Harmonic Analysis III網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Harmonic Analysis III被引頻次




書目名稱Geometric Harmonic Analysis III被引頻次學(xué)科排名




書目名稱Geometric Harmonic Analysis III年度引用




書目名稱Geometric Harmonic Analysis III年度引用學(xué)科排名




書目名稱Geometric Harmonic Analysis III讀者反饋




書目名稱Geometric Harmonic Analysis III讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:05 | 只看該作者
Juliana Favaro,Vivian Barzi Loureirost, . should be a fundamental solution for . with pole (or singularity) at some “pole” in . and, second, the boundary trace of . should vanish on .. These two properties alone typically fail to identify such an object uniquely (thus justifying referring to it as “a Green function,” as opposed to “th
板凳
發(fā)表于 2025-3-22 03:48:34 | 只看該作者
地板
發(fā)表于 2025-3-22 08:18:31 | 只看該作者
5#
發(fā)表于 2025-3-22 10:51:18 | 只看該作者
978-3-031-22737-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
6#
發(fā)表于 2025-3-22 16:46:43 | 只看該作者
7#
發(fā)表于 2025-3-22 21:02:37 | 只看該作者
Dorina Mitrea,Irina Mitrea,Marius MitreaPresents a comprehensive novel theory for singular integral operators in optimal geometrical settings.A great deal of applications are explored in detail.The key results are new, with complete, essent
8#
發(fā)表于 2025-3-22 21:18:43 | 只看該作者
9#
發(fā)表于 2025-3-23 01:33:24 | 只看該作者
10#
發(fā)表于 2025-3-23 07:03:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明光市| 定安县| 包头市| 宜昌市| 阿尔山市| 图们市| 洞头县| 普安县| 新巴尔虎右旗| 南木林县| 卢氏县| 南雄市| 贵德县| 湘乡市| 都兰县| 图木舒克市| 璧山县| 岑溪市| 临桂县| 民县| 潍坊市| 辉县市| 襄垣县| 陕西省| 黄平县| 黎川县| 林甸县| 轮台县| 江安县| 涟水县| 佛学| 荥经县| 阿克陶县| 平顶山市| 都兰县| 乌拉特中旗| 泸州市| 格尔木市| 北京市| 绩溪县| 石首市|