找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Harmonic Analysis III; Integral Representat Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2023 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 果園
11#
發(fā)表于 2025-3-23 10:12:28 | 只看該作者
12#
發(fā)表于 2025-3-23 16:50:20 | 只看該作者
13#
發(fā)表于 2025-3-23 18:54:57 | 只看該作者
14#
發(fā)表于 2025-3-23 22:39:33 | 只看該作者
Book 2023aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings. The text is intended for researchers, graduate students, and industry profession
15#
發(fā)表于 2025-3-24 03:34:39 | 只看該作者
Quantitative Fatou-Type Theorems in Arbitrary UR Domains,elliptic equation in a certain domain implies the a.e. existence of the pointwise nontangential boundary trace of said function. It is natural to call such a theorem quantitative if the boundary trace does not just simply exist, but also encodes significant information regarding the size and regular
16#
發(fā)表于 2025-3-24 07:50:15 | 只看該作者
17#
發(fā)表于 2025-3-24 13:02:04 | 只看該作者
Green Functions and Poisson Kernels for the Laplacian, by questions in potential theory for the Laplacian in . of the following sort: When is the Poisson kernel associated with a domain . (as the Radon-Nikodym derivative of the harmonic measure with respect to the surface measure) well-defined and equal to the (minus) normal derivative of the Green fun
18#
發(fā)表于 2025-3-24 15:38:51 | 只看該作者
19#
發(fā)表于 2025-3-24 21:34:38 | 只看該作者
Quantitative Fatou-Type Theorems in Arbitrary UR Domains,nt .. Such a result has a wide range of applications, including the theory of Hardy spaces associated with injectively elliptic first-order systems in UR domains. Among other things, here we also prove a quantitative Fatou-type theorem for the gradient of null-solutions of second-order systems in UR
20#
發(fā)表于 2025-3-24 23:29:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武平县| 土默特左旗| 虎林市| 镇宁| 盐边县| 留坝县| 吉安县| 泰顺县| 镇远县| 宜黄县| 四平市| 和硕县| 手游| 灯塔市| 贵定县| 台安县| 长顺县| 项城市| 克什克腾旗| 正定县| 基隆市| 临潭县| 石城县| 望都县| 北安市| 资源县| 定陶县| 壶关县| 聊城市| 郑州市| 津南区| 会泽县| 历史| 巴里| 兴化市| 疏附县| 揭东县| 雅江县| 礼泉县| 依兰县| 辰溪县|