找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Function Theory; Explorations in Comp Steven G. Krantz Textbook 2006 Birkh?user Boston 2006 Complex analysis.Green‘s function.Poi

[復制鏈接]
查看: 37820|回復: 55
樓主
發(fā)表于 2025-3-21 18:56:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Function Theory
副標題Explorations in Comp
編輯Steven G. Krantz
視頻videohttp://file.papertrans.cn/384/383511/383511.mp4
概述Presented from a geometric analytical viewpoint, this work addresses advanced topics in complex analysis that verge on modern areas of research.Contains an extensive bibliography of both monographs an
叢書名稱Cornerstones
圖書封面Titlebook: Geometric Function Theory; Explorations in Comp Steven G. Krantz Textbook 2006 Birkh?user Boston 2006 Complex analysis.Green‘s function.Poi
描述.Complex variables is a precise, elegant, and captivating subject. Presented from the point of view of modern work in the field, this new book addresses advanced topics in complex analysis that verge on current areas of research. The author adroitly weaves these varied topics to reveal a number of delightful interactions. Perhaps more importantly, the topics are presented with an understanding and explanation of their interrelations with other important parts of mathematics: harmonic analysis, differential geometry, partial differential equations, potential theory, abstract algebra, and invariant theory. Although the book examines complex analysis from many different points of view, it uses geometric analysis as its unifying theme...This methodically designed book contains a rich collection of exercises, examples, and illustrations within each individual chapter, concluding with an extensive bibliography of monographs, research papers, and a thorough index. Seeking to capture the imagination of advanced undergraduate and graduate students with a basic background in complex analysis –and also to spark the interest of seasoned workers in the field – the book imparts a solid education
出版日期Textbook 2006
關鍵詞Complex analysis; Green‘s function; Poisson kernel; Potential theory; Schwarz lemma; calculus; differentia
版次1
doihttps://doi.org/10.1007/0-8176-4440-7
isbn_ebook978-0-8176-4440-6Series ISSN 2197-182X Series E-ISSN 2197-1838
issn_series 2197-182X
copyrightBirkh?user Boston 2006
The information of publication is updating

書目名稱Geometric Function Theory影響因子(影響力)




書目名稱Geometric Function Theory影響因子(影響力)學科排名




書目名稱Geometric Function Theory網絡公開度




書目名稱Geometric Function Theory網絡公開度學科排名




書目名稱Geometric Function Theory被引頻次




書目名稱Geometric Function Theory被引頻次學科排名




書目名稱Geometric Function Theory年度引用




書目名稱Geometric Function Theory年度引用學科排名




書目名稱Geometric Function Theory讀者反饋




書目名稱Geometric Function Theory讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:22:08 | 只看該作者
Ged?chtnis ist gut und schlechtThe concept of normal family is an outgrowth of the standard technique for proving the Riemann mapping theorem. Recall that the mapping function is produced as the solution of a certain extremal problem, and showing that that extremal problem actually has a solution is a byproduct of a normal families argument.
板凳
發(fā)表于 2025-3-22 00:23:31 | 只看該作者
Symmetrieoperationen mit Strecken,Every smoothly bounded domain in the complex plane has a Green’s function. The Green’s function is fundamental to the Poisson integral, the theory of harmonic functions, and to the broad panorama of complex function theory.
地板
發(fā)表于 2025-3-22 07:06:45 | 只看該作者
5#
發(fā)表于 2025-3-22 09:40:21 | 只看該作者
Variations on the Theme of the Schwarz LemmaThe Schwarz lemma is one of the simplest results in all of complex function theory. A direct application of the maximum principle, it is merely a statement about the rate of growth of holomorphic functions on the unit disk.
6#
發(fā)表于 2025-3-22 13:05:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:02:56 | 只看該作者
8#
發(fā)表于 2025-3-22 23:07:32 | 只看該作者
9#
發(fā)表于 2025-3-23 04:00:00 | 只看該作者
Birkh?user Boston 2006
10#
發(fā)表于 2025-3-23 08:45:57 | 只看該作者
Geometric Function Theory978-0-8176-4440-6Series ISSN 2197-182X Series E-ISSN 2197-1838
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 17:03
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
麦盖提县| 卓尼县| 榆社县| 新乡市| 通化县| 汕头市| 黄冈市| 陆川县| 南木林县| 高淳县| 海口市| 瑞丽市| 赤水市| 永福县| 宜章县| 罗源县| 石林| 叙永县| 溧阳市| 连江县| 扶绥县| 吉木乃县| 营山县| 克什克腾旗| 翁牛特旗| 神木县| 吴川市| 恭城| 兴仁县| 奈曼旗| 武胜县| 莱芜市| 杂多县| 延吉市| 云梦县| 江孜县| 张掖市| 洛隆县| 呈贡县| 昭平县| 杨浦区|