找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Function Theory; Explorations in Comp Steven G. Krantz Textbook 2006 Birkh?user Boston 2006 Complex analysis.Green‘s function.Poi

[復(fù)制鏈接]
查看: 37827|回復(fù): 55
樓主
發(fā)表于 2025-3-21 18:56:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Function Theory
副標(biāo)題Explorations in Comp
編輯Steven G. Krantz
視頻videohttp://file.papertrans.cn/384/383511/383511.mp4
概述Presented from a geometric analytical viewpoint, this work addresses advanced topics in complex analysis that verge on modern areas of research.Contains an extensive bibliography of both monographs an
叢書名稱Cornerstones
圖書封面Titlebook: Geometric Function Theory; Explorations in Comp Steven G. Krantz Textbook 2006 Birkh?user Boston 2006 Complex analysis.Green‘s function.Poi
描述.Complex variables is a precise, elegant, and captivating subject. Presented from the point of view of modern work in the field, this new book addresses advanced topics in complex analysis that verge on current areas of research. The author adroitly weaves these varied topics to reveal a number of delightful interactions. Perhaps more importantly, the topics are presented with an understanding and explanation of their interrelations with other important parts of mathematics: harmonic analysis, differential geometry, partial differential equations, potential theory, abstract algebra, and invariant theory. Although the book examines complex analysis from many different points of view, it uses geometric analysis as its unifying theme...This methodically designed book contains a rich collection of exercises, examples, and illustrations within each individual chapter, concluding with an extensive bibliography of monographs, research papers, and a thorough index. Seeking to capture the imagination of advanced undergraduate and graduate students with a basic background in complex analysis –and also to spark the interest of seasoned workers in the field – the book imparts a solid education
出版日期Textbook 2006
關(guān)鍵詞Complex analysis; Green‘s function; Poisson kernel; Potential theory; Schwarz lemma; calculus; differentia
版次1
doihttps://doi.org/10.1007/0-8176-4440-7
isbn_ebook978-0-8176-4440-6Series ISSN 2197-182X Series E-ISSN 2197-1838
issn_series 2197-182X
copyrightBirkh?user Boston 2006
The information of publication is updating

書目名稱Geometric Function Theory影響因子(影響力)




書目名稱Geometric Function Theory影響因子(影響力)學(xué)科排名




書目名稱Geometric Function Theory網(wǎng)絡(luò)公開度




書目名稱Geometric Function Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Function Theory被引頻次




書目名稱Geometric Function Theory被引頻次學(xué)科排名




書目名稱Geometric Function Theory年度引用




書目名稱Geometric Function Theory年度引用學(xué)科排名




書目名稱Geometric Function Theory讀者反饋




書目名稱Geometric Function Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:08 | 只看該作者
Ged?chtnis ist gut und schlechtThe concept of normal family is an outgrowth of the standard technique for proving the Riemann mapping theorem. Recall that the mapping function is produced as the solution of a certain extremal problem, and showing that that extremal problem actually has a solution is a byproduct of a normal families argument.
板凳
發(fā)表于 2025-3-22 00:23:31 | 只看該作者
Symmetrieoperationen mit Strecken,Every smoothly bounded domain in the complex plane has a Green’s function. The Green’s function is fundamental to the Poisson integral, the theory of harmonic functions, and to the broad panorama of complex function theory.
地板
發(fā)表于 2025-3-22 07:06:45 | 只看該作者
5#
發(fā)表于 2025-3-22 09:40:21 | 只看該作者
Variations on the Theme of the Schwarz LemmaThe Schwarz lemma is one of the simplest results in all of complex function theory. A direct application of the maximum principle, it is merely a statement about the rate of growth of holomorphic functions on the unit disk.
6#
發(fā)表于 2025-3-22 13:05:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:02:56 | 只看該作者
8#
發(fā)表于 2025-3-22 23:07:32 | 只看該作者
9#
發(fā)表于 2025-3-23 04:00:00 | 只看該作者
Birkh?user Boston 2006
10#
發(fā)表于 2025-3-23 08:45:57 | 只看該作者
Geometric Function Theory978-0-8176-4440-6Series ISSN 2197-182X Series E-ISSN 2197-1838
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太湖县| 延庆县| 芷江| 个旧市| 东丰县| 东明县| 达州市| 屏边| 武陟县| 静乐县| 隆子县| 兴仁县| 临汾市| 大埔区| 贵定县| 吉安县| 开封市| 定兴县| 贵州省| 观塘区| 成都市| 永德县| 深州市| 虎林市| 拉萨市| 冀州市| 陇西县| 鄢陵县| 子洲县| 宝坻区| 连江县| 秀山| 武川县| 黄骅市| 通海县| 大荔县| 甘谷县| 固安县| 屯留县| 阿勒泰市| 太仓市|