找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Dynamics; Constantin Udri?te Book 2000 Kluwer Academic Publishers 2000 dynamics.geometry.manifold.mathematics.mechanics

[復制鏈接]
樓主: detumescence
21#
發(fā)表于 2025-3-25 04:44:09 | 只看該作者
Vector Fields,Scalar fields (see 1.1) and vector fields (see 1.2 and 1.5) are mathematical models derivedfrom laws of nature, among which we cite the following examples:
22#
發(fā)表于 2025-3-25 10:58:16 | 只看該作者
23#
發(fā)表于 2025-3-25 12:54:15 | 只看該作者
24#
發(fā)表于 2025-3-25 19:53:29 | 只看該作者
25#
發(fā)表于 2025-3-25 23:54:27 | 只看該作者
26#
發(fā)表于 2025-3-26 02:20:42 | 只看該作者
https://doi.org/10.1007/978-1-349-19886-3are self-distributed as tangent vectors to curves. The parallel, torse forming, Newtonian, electrostatic, etc vector fields serve as examples for finding analytic expressions of the field lines (see 3.1, 3.2).
27#
發(fā)表于 2025-3-26 08:13:12 | 只看該作者
https://doi.org/10.1007/978-3-030-40394-2r field X, i.e., the zeros of X, are the equilibrium points of the system. If the physical system remains in a neighbourhood of the equilibrium point x. when the evolution starts in a neighbourhood of x., then the point x. is said to be stable; if not, it is said to be unstable.
28#
發(fā)表于 2025-3-26 09:34:43 | 只看該作者
29#
發(fā)表于 2025-3-26 13:17:12 | 只看該作者
https://doi.org/10.1007/978-3-476-02751-1ns in biology, chemistry, physics, engineering, etc (or in detail in the domains mentioned in the introduction to Chapter 5). From these we shall present only the basic ideas and examples, noting however that the general theory requires supplementary knowledge of functional analysis, topology and dynamical systems.
30#
發(fā)表于 2025-3-26 16:55:28 | 只看該作者
Dramaturgie der Menschheit - Lessinga memory of its initial stress state and of its stress work, depending on its stress history. The modification of behavior under small variations of the material parameters is described by using elements of bifurcation theory.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
襄汾县| 勐海县| 泊头市| 房山区| 赤水市| 盐亭县| 广南县| 文山县| 大埔区| 宜君县| 平塘县| 武陟县| 南平市| 桑日县| 日喀则市| 张家川| 八宿县| 黔东| 固原市| 金阳县| 福安市| 大名县| 攀枝花市| 阜宁县| 河池市| 望江县| 梧州市| 论坛| 天门市| 定州市| 永嘉县| 南川市| 威信县| 永寿县| 油尖旺区| 阳高县| 永和县| 台南市| 特克斯县| 邢台县| 察雅县|