找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Dynamics; Constantin Udri?te Book 2000 Kluwer Academic Publishers 2000 dynamics.geometry.manifold.mathematics.mechanics

[復(fù)制鏈接]
查看: 45623|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:52:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Dynamics
編輯Constantin Udri?te
視頻videohttp://file.papertrans.cn/384/383506/383506.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Geometric Dynamics;  Constantin Udri?te Book 2000 Kluwer Academic Publishers 2000 dynamics.geometry.manifold.mathematics.mechanics
描述Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc
出版日期Book 2000
關(guān)鍵詞dynamics; geometry; manifold; mathematics; mechanics
版次1
doihttps://doi.org/10.1007/978-94-011-4187-1
isbn_softcover978-94-010-5822-3
isbn_ebook978-94-011-4187-1
copyrightKluwer Academic Publishers 2000
The information of publication is updating

書目名稱Geometric Dynamics影響因子(影響力)




書目名稱Geometric Dynamics影響因子(影響力)學(xué)科排名




書目名稱Geometric Dynamics網(wǎng)絡(luò)公開度




書目名稱Geometric Dynamics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Dynamics被引頻次




書目名稱Geometric Dynamics被引頻次學(xué)科排名




書目名稱Geometric Dynamics年度引用




書目名稱Geometric Dynamics年度引用學(xué)科排名




書目名稱Geometric Dynamics讀者反饋




書目名稱Geometric Dynamics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:27:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:45 | 只看該作者
Potential Differential Systems of Order One and Catastrophe Theory,calar field ?, and curves of maximal local increase off. If the potential ? is a subharmonic (respectively harmonic or supraharmonic) fuction, i.e., Δf≥ 0 (respectively Δf = 0 or Δ?≤ 0), then the flow generated by grad f increases (respectively preserves or decreases) the volume (see 5.1).
地板
發(fā)表于 2025-3-22 05:46:30 | 只看該作者
5#
發(fā)表于 2025-3-22 10:25:01 | 只看該作者
6#
發(fā)表于 2025-3-22 15:11:21 | 只看該作者
7#
發(fā)表于 2025-3-22 18:58:35 | 只看該作者
Book 2000e trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc
8#
發(fā)表于 2025-3-22 22:35:29 | 只看該作者
e shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc978-94-010-5822-3978-94-011-4187-1
9#
發(fā)表于 2025-3-23 02:38:55 | 只看該作者
https://doi.org/10.1007/978-1-349-19886-3are self-distributed as tangent vectors to curves. The parallel, torse forming, Newtonian, electrostatic, etc vector fields serve as examples for finding analytic expressions of the field lines (see 3.1, 3.2).
10#
發(fā)表于 2025-3-23 07:10:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红河县| 右玉县| 修文县| 永吉县| 竹北市| 余干县| 繁峙县| 黎川县| 康乐县| 六安市| 景泰县| 崇义县| 洛扎县| 冀州市| 大悟县| 库伦旗| 龙门县| 鄂伦春自治旗| 阿图什市| 英德市| 图木舒克市| 桃园县| 阿图什市| 海盐县| 万盛区| 湟中县| 石泉县| 满城县| 龙游县| 霍邱县| 喀喇沁旗| 土默特左旗| 大方县| 长顺县| 福贡县| 青海省| 西吉县| 鄯善县| 同心县| 荣昌县| 宁阳县|