找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Discrepancy; An Illustrated Guide Ji?í Matou?ek Book 1999 Springer-Verlag Berlin Heidelberg 1999 Combinatorics.Dimension.Diskrepa

[復(fù)制鏈接]
樓主: 重要
21#
發(fā)表于 2025-3-25 04:21:38 | 只看該作者
978-3-642-03941-6Springer-Verlag Berlin Heidelberg 1999
22#
發(fā)表于 2025-3-25 08:51:16 | 只看該作者
23#
發(fā)表于 2025-3-25 14:44:29 | 只看該作者
24#
發(fā)表于 2025-3-25 16:55:35 | 只看該作者
https://doi.org/10.1007/978-981-10-7500-1In this chapter, we are going to investigate the combinatorial discrepancy, an exciting and significant subject in its own right. From Section 1.3, we recall the basic definition: If . is a finite set and . ? 2. is a family of sets on .,a . is any mapping ., and we have disc ., where .
25#
發(fā)表于 2025-3-25 21:10:01 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:16 | 只看該作者
27#
發(fā)表于 2025-3-26 06:35:03 | 只看該作者
https://doi.org/10.1007/978-3-658-18971-6id, placed in the unit square in an appropriate scale, as in Fig. 2.1(a). It is easy to see that this gives discrepancy of the order .. Another attempt might be n independent random points in the unit square as in Fig. 2.1(b), but these typically have discrepancy about . as well. (In fact, with high
28#
發(fā)表于 2025-3-26 09:41:20 | 只看該作者
29#
發(fā)表于 2025-3-26 14:42:36 | 只看該作者
30#
發(fā)表于 2025-3-26 19:01:24 | 只看該作者
https://doi.org/10.1007/978-3-476-05622-1seen some lower bounds in Chapter 4 but not in a geometric setting). So far we have not answered the basic question, Problem 1.1, namely whether the discrepancy for axis-parallel rectangles must grow to infinity as n . → ∞. An answer is given in Section 6.1, where we prove that .(.,..) is at least o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
菏泽市| 喜德县| 包头市| 夏河县| 临汾市| 玉山县| 晋城| 独山县| 沈阳市| 遵义市| 霍林郭勒市| 富宁县| 昔阳县| 丰顺县| 黄骅市| 鞍山市| 临沧市| 左贡县| 巴东县| 哈尔滨市| 从化市| 宁安市| 大兴区| 卓资县| 客服| 白玉县| 东港市| 双柏县| 万载县| 裕民县| 鹤岗市| 博湖县| 伊川县| 潼关县| 东海县| 赤水市| 陇西县| 涿州市| 宝丰县| 广汉市| 文安县|