找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Discrepancy; An Illustrated Guide Ji?í Matou?ek Book 1999 Springer-Verlag Berlin Heidelberg 1999 Combinatorics.Dimension.Diskrepa

[復(fù)制鏈接]
查看: 22611|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:33:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Geometric Discrepancy
副標(biāo)題An Illustrated Guide
編輯Ji?í Matou?ek
視頻videohttp://file.papertrans.cn/384/383504/383504.mp4
概述Only up-to-date comprehensive guide to the subject.Includes supplementary material:
叢書(shū)名稱(chēng)Algorithms and Combinatorics
圖書(shū)封面Titlebook: Geometric Discrepancy; An Illustrated Guide Ji?í Matou?ek Book 1999 Springer-Verlag Berlin Heidelberg 1999 Combinatorics.Dimension.Diskrepa
描述Discrepancy theory is also called the theory of irregularities of distribution. Here are some typical questions: What is the "most uniform" way of dis- tributing n points in the unit square? How big is the "irregularity" necessarily present in any such distribution? For a precise formulation of these questions, we must quantify the irregularity of a given distribution, and discrepancy is a numerical parameter of a point set serving this purpose. Such questions were first tackled in the thirties, with a motivation com- ing from number theory. A more or less satisfactory solution of the basic discrepancy problem in the plane was completed in the late sixties, and the analogous higher-dimensional problem is far from solved even today. In the meantime, discrepancy theory blossomed into a field of remarkable breadth and diversity. There are subfields closely connected to the original number- theoretic roots of discrepancy theory, areas related to Ramsey theory and to hypergraphs, and also results supporting eminently practical methods and algorithms for numerical integration and similar tasks. The applications in- clude financial calculations, computer graphics, and computational physic
出版日期Book 1999
關(guān)鍵詞Combinatorics; Dimension; Diskrepanz; Gleichverteilung; Grad; Kombinatorik; Lattice; Matching; Ramsey theory
版次1
doihttps://doi.org/10.1007/978-3-642-03942-3
isbn_softcover978-3-642-03941-6
isbn_ebook978-3-642-03942-3Series ISSN 0937-5511 Series E-ISSN 2197-6783
issn_series 0937-5511
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

書(shū)目名稱(chēng)Geometric Discrepancy影響因子(影響力)




書(shū)目名稱(chēng)Geometric Discrepancy影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometric Discrepancy網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometric Discrepancy網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometric Discrepancy被引頻次




書(shū)目名稱(chēng)Geometric Discrepancy被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometric Discrepancy年度引用




書(shū)目名稱(chēng)Geometric Discrepancy年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometric Discrepancy讀者反饋




書(shū)目名稱(chēng)Geometric Discrepancy讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:33 | 只看該作者
0937-5511 rities of distribution. Here are some typical questions: What is the "most uniform" way of dis- tributing n points in the unit square? How big is the "irregularity" necessarily present in any such distribution? For a precise formulation of these questions, we must quantify the irregularity of a give
板凳
發(fā)表于 2025-3-22 02:29:50 | 只看該作者
地板
發(fā)表于 2025-3-22 05:58:02 | 只看該作者
5#
發(fā)表于 2025-3-22 12:05:43 | 只看該作者
Introduction,erse connections and applications of discrepancy theory. Most of the space in that section is devoted to applications in numerical integration and similar problems, which by now constitute an extensive branch of applied mathematics, with conventions and methods quite different from “pure” discrepancy theory.
6#
發(fā)表于 2025-3-22 15:41:17 | 只看該作者
7#
發(fā)表于 2025-3-22 20:18:37 | 只看該作者
https://doi.org/10.1007/978-3-476-05623-8ic and more akin to classical harmonic analysis. For many results obtained by this method, such as the tight lower bound for the discrepancy for discs of a single fixed radius, no other proofs are known.
8#
發(fā)表于 2025-3-22 23:17:23 | 只看該作者
9#
發(fā)表于 2025-3-23 02:25:04 | 只看該作者
https://doi.org/10.1007/978-3-658-18971-6 discrepancy can be achieved, of the order log n. This chapter is devoted to various constructions of such sets and to their higher-dimensional generalizations. In dimension ., for . arbitrary but fixed, the best known sets have discrepancy for axis-parallel boxes of the order log...
10#
發(fā)表于 2025-3-23 08:55:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
且末县| 大港区| 临武县| 江津市| 寿宁县| 化州市| 扎鲁特旗| 阳东县| 泸水县| 白河县| 河北区| 盖州市| 通榆县| 明水县| 辽阳市| 邛崃市| 来安县| 海安县| 林甸县| 兴安盟| 鹤山市| 册亨县| 宜兴市| 顺平县| 连州市| 鹤庆县| 依兰县| 皋兰县| 大宁县| 鄢陵县| 五大连池市| 慈利县| 诸暨市| 公安县| 昌都县| 金塔县| 竹北市| 河间市| 宣化县| 桑日县| 老河口市|