找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Harmonic Analysis; Paolo Ciatti,Alessio Martini Conference proceedings 2021 The Editor(s) (if applicable) and The Aut

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 11:24:37 | 只看該作者
,Verpackung, Lager- und F?rderhilfsmittel, H?rmander’s condition. These spaces were recently introduced by the authors. In this paper we prove a norm characterization in terms of finite differences, the density of test functions, and related isomorphism properties.
52#
發(fā)表于 2025-3-30 14:05:36 | 只看該作者
Lagertechnik und Kommissionierung,died the case .(.)?=?..∕3 by means of the bilinear method. As it turns out, the understanding of that special case becomes also crucial for the treatment of arbitrary finite type perturbation terms .(.).
53#
發(fā)表于 2025-3-30 19:59:03 | 只看該作者
Lagertechnik und Kommissionierung,ions attain exact equality. We characterize ordered pairs of functions that nearly achieve equality for Heisenberg groups. The analysis relies on a characterization of approximate solutions of a certain class of functional equations. A result of this type is developed for a class of such equations.
54#
發(fā)表于 2025-3-30 23:04:03 | 只看該作者
W. Buchholz,W. F. Richter,J. Schwaigerwn. In the Lie group setting, corresponding .. bounds for oscillating spectral multipliers have been established by several authors but only in the open range of exponents. In this paper we establish the endpoint ..(.) bound when . is a stratified Lie group. More importantly we begin to address whether these estimates are sharp.
55#
發(fā)表于 2025-3-31 01:16:03 | 只看該作者
56#
發(fā)表于 2025-3-31 05:49:44 | 只看該作者
57#
發(fā)表于 2025-3-31 11:19:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广水市| 普兰店市| 济阳县| 连江县| 高邑县| 洛扎县| 图木舒克市| 壶关县| 灌阳县| 昌江| 宁波市| 柳江县| 崇文区| 沂水县| 马边| 康保县| 芜湖县| 惠安县| 勐海县| 正宁县| 汉寿县| 绥江县| 科尔| 墨江| 阿勒泰市| 佛山市| 内乡县| 龙海市| 延边| 开阳县| 丹阳市| 牙克石市| 嘉义县| 潼关县| 台湾省| 修文县| 昔阳县| 邵武市| 边坝县| 乐亭县| 连平县|