找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Harmonic Analysis; Paolo Ciatti,Alessio Martini Conference proceedings 2021 The Editor(s) (if applicable) and The Aut

[復制鏈接]
樓主: 召集會議
21#
發(fā)表于 2025-3-25 06:49:00 | 只看該作者
22#
發(fā)表于 2025-3-25 11:22:52 | 只看該作者
23#
發(fā)表于 2025-3-25 12:15:24 | 只看該作者
Geometric Aspects of Harmonic Analysis978-3-030-72058-2Series ISSN 2281-518X Series E-ISSN 2281-5198
24#
發(fā)表于 2025-3-25 17:12:32 | 只看該作者
25#
發(fā)表于 2025-3-25 22:35:41 | 只看該作者
26#
發(fā)表于 2025-3-26 03:40:55 | 只看該作者
Lagertechnik und Kommissionierung,=?., which are of the form .?=?.?+?.(.), where .(.) is a smooth function of finite type. Our results build on previous joint work in which we have studied the case .(.)?=?..∕3 by means of the bilinear method. As it turns out, the understanding of that special case becomes also crucial for the treatm
27#
發(fā)表于 2025-3-26 05:08:45 | 只看該作者
Lagertechnik und Kommissionierung,luding Heisenberg groups, the optimal constant in this inequality is equal to that for Euclidean space of the same topological dimension, yet no functions attain exact equality. We characterize ordered pairs of functions that nearly achieve equality for Heisenberg groups. The analysis relies on a ch
28#
發(fā)表于 2025-3-26 11:22:42 | 只看該作者
W. Buchholz,W. F. Richter,J. Schwaigeran oscillatory factor. Oscillating multipliers have been examined extensively in the Euclidean setting where sharp, endpoint .. estimates are well known. In the Lie group setting, corresponding .. bounds for oscillating spectral multipliers have been established by several authors but only in the op
29#
發(fā)表于 2025-3-26 16:07:02 | 只看該作者
https://doi.org/10.1007/978-3-319-57952-8functions of . when restricted to certain fractal subsets Γ of .. The proofs in their entirety appear in Eswarathasan and Pramanik (Restriction of Laplace–Beltrami eigenfunctions to random Cantor-type sets on manifolds, 2019). The sets Γ that we consider are random and of Cantor-type. For large Lebe
30#
發(fā)表于 2025-3-26 20:14:17 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 21:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西安市| 岳阳市| 澎湖县| 文安县| 丰县| 乌鲁木齐市| 闵行区| 南漳县| 仁化县| 古蔺县| 宜都市| 张家港市| 泌阳县| 东源县| 乡城县| 海丰县| 富锦市| 仁布县| 斗六市| 博客| 务川| 奉贤区| 乌兰察布市| 新干县| 海南省| 法库县| 澄城县| 石林| 仙游县| 昭通市| 兴文县| 施秉县| 班玛县| 泽库县| 金寨县| 招远市| 肇东市| 萝北县| 余江县| 龙井市| 龙海市|