找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA J. Lindenstrauss,V. Milman Conference proceedings 1995 Birkh?user Verlag 199

[復(fù)制鏈接]
樓主: counterfeit
41#
發(fā)表于 2025-3-28 17:18:03 | 只看該作者
42#
發(fā)表于 2025-3-28 19:10:10 | 只看該作者
https://doi.org/10.1007/978-1-4612-2140-1Let . = (..) be positive definite Hermitian . × . matrix. We prove a following strengthening of the Hadamard inequality:.We give similar estimate in the case of non-Hermitian matrix. We use these results for a short proof of the existence of Von Koh’s infinite determinants, and also give a strong isoperimetric inequality for simplices in ?.
43#
發(fā)表于 2025-3-28 23:28:23 | 只看該作者
44#
發(fā)表于 2025-3-29 06:39:13 | 只看該作者
45#
發(fā)表于 2025-3-29 07:14:37 | 只看該作者
46#
發(fā)表于 2025-3-29 12:31:57 | 只看該作者
,Remarks on Bourgain’s Problem on Slicing of Convex Bodies,For a convex symmetric body . ? ?. we define a number .. by:. If the minimum is attained for . = . we say that . is in isotropic position. Any K has an affine image which is in isotropic position.
47#
發(fā)表于 2025-3-29 18:28:24 | 只看該作者
A Note on the Banach-Mazur Distance to the Cube,If . is an .-dimensional normed space, and . denotes the Banach-Mazur distance, then .(., ?.) ≤ ...
48#
發(fā)表于 2025-3-29 23:05:20 | 只看該作者
Uniform Non-Equivalence between Euclidean and Hyperbolic Spaces,It is well known that the Euclidean and hyperbolic (Lobachevsky-Bolyai) spaces .., .. of the same dimension . are homeomorphic. V. A. Efremovich ([1], [2]) proved in 1945, that .. and .. are not uniformly homeomorphic; this means that there does not exist any homeomorphism between them that is uniform together with its inverse.
49#
發(fā)表于 2025-3-30 03:03:12 | 只看該作者
A Remark about Distortion,In this note we show that every Banach space . not containing .. uniformly and with unconditional basis contains an arbitrarily distortable subspace.
50#
發(fā)表于 2025-3-30 04:45:25 | 只看該作者
Symmetric Distortion in ,,,We take notation and definitions from the preceding Note [M].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜陵市| 广州市| 府谷县| 宽甸| 白沙| 巩留县| 舒城县| 白水县| 五峰| 屯门区| 旅游| 赤城县| 崇明县| 钟祥市| 綦江县| 中江县| 凌云县| 年辖:市辖区| 旺苍县| 宣城市| 彭水| 南靖县| 肃宁县| 子长县| 长治市| 祁阳县| 含山县| 页游| 肇源县| 福海县| 法库县| 余庆县| 娱乐| 巢湖市| 长丰县| 县级市| 南充市| 洛扎县| 曲麻莱县| 黄山市| 睢宁县|