找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA J. Lindenstrauss,V. Milman Conference proceedings 1995 Birkh?user Verlag 199

[復(fù)制鏈接]
樓主: counterfeit
11#
發(fā)表于 2025-3-23 11:28:21 | 只看該作者
12#
發(fā)表于 2025-3-23 17:09:08 | 只看該作者
Conference proceedings 1995ions" of this seminar such as probabilistic methods in functional analysis, non-linear theory, harmonic analysis and especially the local theory of Banach spaces and its connection to classical convexity theory in IRn. The papers in this volume are original research papers and include an invited sur
13#
發(fā)表于 2025-3-23 20:04:11 | 只看該作者
https://doi.org/10.1007/978-3-0348-9090-8Finite; Fourier transform; Hilbert space; calculus; function; functional analysis; geometry; harmonic analy
14#
發(fā)表于 2025-3-24 00:19:54 | 只看該作者
15#
發(fā)表于 2025-3-24 03:26:23 | 只看該作者
16#
發(fā)表于 2025-3-24 06:52:35 | 只看該作者
17#
發(fā)表于 2025-3-24 11:33:58 | 只看該作者
18#
發(fā)表于 2025-3-24 16:22:26 | 只看該作者
https://doi.org/10.1007/978-0-387-68367-6pace with an unconditional basis has an arbitrarily distortable subspace. An important part of the proof, due to Milman and Tomczak-Jaegermann [4], is the statement that a space with a basis with no arbitrarily distortable subspace must have a subspace that is asymptotically ... This means that ther
19#
發(fā)表于 2025-3-24 19:07:51 | 只看該作者
https://doi.org/10.1007/978-3-531-90081-0here exist ..,…, .. ? . such that .. ? .{..…, ..} and. This answers a question of V. Milman which appeared during a GAFA seminar talk about the hyperplane problem. We add logarithmical estimates concerning the hyperplane conjecture for proportional subspaces and quotients of Banach spaces with uncon
20#
發(fā)表于 2025-3-25 01:39:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇文区| 宜黄县| 益阳市| 德昌县| 婺源县| 合水县| 南雄市| 夏河县| 昌黎县| 漠河县| 文登市| 遵义市| 山东| 宁安市| 马山县| 武鸣县| 慈利县| 怀化市| 永定县| 荆门市| 辽阳县| 宜兰县| 白河县| 邵阳市| 遂川县| 镶黄旗| 太保市| 衡南县| 新巴尔虎左旗| 渭源县| 大竹县| 镇赉县| 宜城市| 正镶白旗| 华池县| 铁岭县| 双牌县| 安康市| 尚义县| 哈尔滨市| 诏安县|