找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Joram Lindenstrauss,Vitali D. Milman Conference proceedings 1988 Springer-Ve

[復制鏈接]
樓主: postpartum
11#
發(fā)表于 2025-3-23 12:26:58 | 只看該作者
On two theorems of lozanovskii concerning intermediate Banach lattices,
12#
發(fā)表于 2025-3-23 16:01:07 | 只看該作者
13#
發(fā)表于 2025-3-23 19:52:29 | 只看該作者
Vector-valued hausdorff-young inequalities and applications,
14#
發(fā)表于 2025-3-23 22:26:01 | 只看該作者
15#
發(fā)表于 2025-3-24 03:40:08 | 只看該作者
The invariant subspace problem on a class of nonreflexive Banach spaces, 1,e might be true of any space ?. ⊕ . where . is a separable Banach space. This conjecture turns out to be true, and by proving it here we give the first example of a reasonably large class of Banach spaces for which the solution to the invariant subspace problem is known. This continues the sequence
16#
發(fā)表于 2025-3-24 09:54:07 | 只看該作者
0075-8434 of the papers in this volume are original research papers. There was last year a strong emphasis on classical finite-dimensional convexity theory and its connection with Banach space theory. In recent years, it has become evident that the notions and results of the local theory of Banach spaces are
17#
發(fā)表于 2025-3-24 12:22:05 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:16 | 只看該作者
The invariant subspace problem on a class of nonreflexive Banach spaces, 1,ad [5,1]) and here continues with the case of any separable Banach space containing ?. as a complemented subspace. No counter-example is known to the author for a Banach space which does not contain ?..
19#
發(fā)表于 2025-3-24 22:33:31 | 只看該作者
20#
發(fā)表于 2025-3-25 01:01:35 | 只看該作者
0075-8434 useful in solving classical questions in convexity theory. The present volume contributes to clarifying this point. In addition this volume contains basic contributions to ergodic theory, invariant subspace theory and qualitative differential geometry.978-3-540-19353-1978-3-540-39235-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
叙永县| 五河县| 涡阳县| 普定县| 高尔夫| 朔州市| 清新县| 福泉市| 台湾省| 绥芬河市| 大理市| 阿荣旗| 三亚市| 镇巴县| 石景山区| 安顺市| 颍上县| 广州市| 杂多县| 雷州市| 海南省| 临江市| 宁津县| 安国市| 余庆县| 武定县| 大姚县| 赣榆县| 东乌珠穆沁旗| 丹东市| 宝鸡市| 神池县| 茂名市| 栾川县| 神木县| 聊城市| 茶陵县| 无为县| 大庆市| 清苑县| 九龙城区|