找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Joram Lindenstrauss,Vitali D. Milman Conference proceedings 1988 Springer-Ve

[復制鏈接]
查看: 46582|回復: 51
樓主
發(fā)表于 2025-3-21 16:14:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Aspects of Functional Analysis
副標題Israel Seminar (GAFA
編輯Joram Lindenstrauss,Vitali D. Milman
視頻videohttp://file.papertrans.cn/384/383461/383461.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Joram Lindenstrauss,Vitali D. Milman Conference proceedings 1988 Springer-Ve
描述This is the third published volume of the proceedings of the Israel Seminar on Geometric Aspects of Functional Analysis. The large majority of the papers in this volume are original research papers. There was last year a strong emphasis on classical finite-dimensional convexity theory and its connection with Banach space theory. In recent years, it has become evident that the notions and results of the local theory of Banach spaces are useful in solving classical questions in convexity theory. The present volume contributes to clarifying this point. In addition this volume contains basic contributions to ergodic theory, invariant subspace theory and qualitative differential geometry.
出版日期Conference proceedings 1988
關鍵詞Banach Space; Convexity; banach spaces; functional analysis
版次1
doihttps://doi.org/10.1007/BFb0081732
isbn_softcover978-3-540-19353-1
isbn_ebook978-3-540-39235-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書目名稱Geometric Aspects of Functional Analysis影響因子(影響力)




書目名稱Geometric Aspects of Functional Analysis影響因子(影響力)學科排名




書目名稱Geometric Aspects of Functional Analysis網(wǎng)絡公開度




書目名稱Geometric Aspects of Functional Analysis網(wǎng)絡公開度學科排名




書目名稱Geometric Aspects of Functional Analysis被引頻次




書目名稱Geometric Aspects of Functional Analysis被引頻次學科排名




書目名稱Geometric Aspects of Functional Analysis年度引用




書目名稱Geometric Aspects of Functional Analysis年度引用學科排名




書目名稱Geometric Aspects of Functional Analysis讀者反饋




書目名稱Geometric Aspects of Functional Analysis讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:34:12 | 只看該作者
Geometric Aspects of Functional Analysis978-3-540-39235-4Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 00:37:51 | 只看該作者
https://doi.org/10.1007/BFb0081732Banach Space; Convexity; banach spaces; functional analysis
地板
發(fā)表于 2025-3-22 06:45:46 | 只看該作者
J.-B. Michel,J. L. Salzmann,M. Safare might be true of any space ?. ⊕ . where . is a separable Banach space. This conjecture turns out to be true, and by proving it here we give the first example of a reasonably large class of Banach spaces for which the solution to the invariant subspace problem is known. This continues the sequence
5#
發(fā)表于 2025-3-22 10:31:22 | 只看該作者
6#
發(fā)表于 2025-3-22 13:32:22 | 只看該作者
7#
發(fā)表于 2025-3-22 20:27:43 | 只看該作者
8#
發(fā)表于 2025-3-23 01:04:51 | 只看該作者
,On Milman’s inequality and random subspaces which escape through a mesh in ,,,Let . be a subset in the Euclidean space .. and 1 <- . < .. We find sufficient conditions which guarantee the existence and even with probability close to 1, of .-codimensional subspaces which miss .. As a consequence we derive a sharp form of Milman‘s inequality and discuss some applications to Banach spaces.
9#
發(fā)表于 2025-3-23 02:07:09 | 只看該作者
Dimension, non-linear spectra and width,This talk presents a Morse-theoretic overview of some well known results and less known problems in spectral geometry and approximation theory.
10#
發(fā)表于 2025-3-23 09:24:05 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大兴区| 集贤县| 昌宁县| 肇源县| 蓬莱市| 昭觉县| 闸北区| 武清区| 舞阳县| 易门县| 宝清县| 蚌埠市| 都匀市| 民勤县| 凉城县| 呼和浩特市| 霍林郭勒市| 黎平县| 卓资县| 台湾省| 常山县| 江达县| 景德镇市| 九寨沟县| 安乡县| 定日县| 敖汉旗| 石河子市| 灵宝市| 泽库县| 中阳县| 广汉市| 凌源市| 洪泽县| 山丹县| 依安县| 临夏县| 虎林市| 通州区| 金坛市| 视频|