找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Approximation Theory; Alexey R. Alimov,Igor’ G. Tsar’kov Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus

[復(fù)制鏈接]
樓主: architect
31#
發(fā)表于 2025-3-26 21:54:18 | 只看該作者
32#
發(fā)表于 2025-3-27 02:04:52 | 只看該作者
https://doi.org/10.1007/978-3-030-34702-4ple, of approximation by rational fractions, splines with free knots, and exponential sums (see Sect.?. and Chap.?.). For such sets?., approximative properties of existence, uniqueness, and approximative compactness are of special importance.
33#
發(fā)表于 2025-3-27 08:24:49 | 只看該作者
34#
發(fā)表于 2025-3-27 13:21:30 | 只看該作者
Convexity of Chebyshev Sets and Suns,owing fact important for applications: in corresponding spaces, a?nonconvex set cannot be a?Chebyshev set. As a?corollary, at some point either the existence or the uniqueness property is not satisfied. Results of this kind can be useful in solving extremal problems.
35#
發(fā)表于 2025-3-27 15:38:23 | 只看該作者
36#
發(fā)表于 2025-3-27 19:12:45 | 只看該作者
37#
發(fā)表于 2025-3-27 23:33:58 | 只看該作者
Approximation of Vector-Valued Functions,al-valued functions, approximation by Chebyshev subspaces was found to be closely related to various problems in interpolation, uniqueness, and the number of zeros in nontrivial polynomials (the generalized Haar property). For vector-valued functions, the relation between such properties turned out to be less simple.
38#
發(fā)表于 2025-3-28 04:02:39 | 只看該作者
Chebyshev Centre of a Set. The Problem of Simultaneous Approximation of a Class by a Singleton Set,ce. In this chapter, we consider the problem of approximating a?set by a?class of sets. In this problem, it is not only the evaluation of the approximation that is important, but also the?set that best approximates this class (an optimal set).
39#
發(fā)表于 2025-3-28 07:24:06 | 只看該作者
Approximative Properties of Arbitrary Sets in Normed Linear Spaces. Almost Chebyshev Sets and Sets ple, of approximation by rational fractions, splines with free knots, and exponential sums (see Sect.?. and Chap.?.). For such sets?., approximative properties of existence, uniqueness, and approximative compactness are of special importance.
40#
發(fā)表于 2025-3-28 11:25:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌县| 沧州市| 陵水| 泗水县| 麻江县| 台江县| 玉溪市| 巨野县| 涪陵区| 德格县| 荆州市| 德保县| 广昌县| 锦屏县| 孙吴县| 晋中市| 南雄市| 凤阳县| 屏东市| 龙门县| 甘洛县| 迁西县| 全椒县| 黄大仙区| 慈溪市| 辛集市| 调兵山市| 皮山县| 保定市| 崇州市| 静宁县| 抚远县| 莆田市| 桃园市| 兰州市| 台南县| 南华县| 鹤庆县| 都江堰市| 巫溪县| 临安市|