找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Approximation Theory; Alexey R. Alimov,Igor’ G. Tsar’kov Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus

[復制鏈接]
查看: 47576|回復: 57
樓主
發(fā)表于 2025-3-21 20:01:45 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Approximation Theory
編輯Alexey R. Alimov,Igor’ G. Tsar’kov
視頻videohttp://file.papertrans.cn/384/383458/383458.mp4
概述Presents novel results in monograph form.Funded by the Russian Foundation for Basic Research.Suitable for researchers and postgraduates
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Geometric Approximation Theory;  Alexey R. Alimov,Igor’ G. Tsar’kov Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus
描述This monograph provides a comprehensive introduction to the classical geometric approximation theory, emphasizing important themes related to the theory including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related problems, many of which appear for the first time in monograph form. The text also discusses the interrelations between main objects of geometric approximation theory, formulating a number of auxiliary problems for demonstration. Central ideas include the problems of existence and uniqueness of elements of best approximations as well as properties of sets including subspaces of polynomials and splines, classes of rational functions, and abstract subsets of normed linear spaces. The book begins with a brief introduction to geometric approximation theory, progressing through fundamental classical ideas and results as a basis for various approximation sets, suns, and Chebyshev systems. Itconcludes with a review of approximation by abstract sets and related problems, presenting novel results throughout the section. This text is suitable for both theoretical and applied viewpoints and e
出版日期Book 2021
關鍵詞best approximation; nearest point; metric projection; Chebyshev set; Chebyshev subspace; Chebyshev center
版次1
doihttps://doi.org/10.1007/978-3-030-90951-2
isbn_softcover978-3-030-90953-6
isbn_ebook978-3-030-90951-2Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometric Approximation Theory影響因子(影響力)




書目名稱Geometric Approximation Theory影響因子(影響力)學科排名




書目名稱Geometric Approximation Theory網絡公開度




書目名稱Geometric Approximation Theory網絡公開度學科排名




書目名稱Geometric Approximation Theory被引頻次




書目名稱Geometric Approximation Theory被引頻次學科排名




書目名稱Geometric Approximation Theory年度引用




書目名稱Geometric Approximation Theory年度引用學科排名




書目名稱Geometric Approximation Theory讀者反饋




書目名稱Geometric Approximation Theory讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:51:59 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:25:01 | 只看該作者
Book 2021ry including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related problems, many of which appear for the first time in monograph form. The text also discusses the interrelations between main objects of geometri
地板
發(fā)表于 2025-3-22 06:07:27 | 只看該作者
1439-7382 monograph provides a comprehensive introduction to the classical geometric approximation theory, emphasizing important themes related to the theory including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related
5#
發(fā)表于 2025-3-22 11:07:32 | 只看該作者
Discursive Approaches to Language Policyonditions, we mention de la Vallée Poussin’s estimates (see Sect.?.), the Haar characterization property (see?Sect.?.), and Mairhuber’s theorem (see Sect.?.), which characterizes the metrizable compact sets?. such that the space .(.) contains nontrivial finite-dimensional Chebyshev subspaces.
6#
發(fā)表于 2025-3-22 16:22:27 | 只看該作者
ar cones, are discussed in Sect.?.. The alternation theorem for Haar cones is given in?Sect.?.. Next in ., we discuss the property of varisolvency, which is a?generalization of the classical Haar condition.
7#
發(fā)表于 2025-3-22 18:44:50 | 只看該作者
Comparative Epidemiology Experiment: Brazil,ters. In particular, this problem includes the classical Bernstein’s problem of approximation of an element by a?fixed family of nested planes or the generalization of this problem to rational approximations by a?family of rational functions.
8#
發(fā)表于 2025-3-22 23:34:43 | 只看該作者
9#
發(fā)表于 2025-3-23 01:45:34 | 只看該作者
10#
發(fā)表于 2025-3-23 06:23:50 | 只看該作者
,Width. Approximation by a?Family of Sets,ters. In particular, this problem includes the classical Bernstein’s problem of approximation of an element by a?fixed family of nested planes or the generalization of this problem to rational approximations by a?family of rational functions.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 18:15
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
远安县| 普陀区| 清镇市| 湖北省| 莱阳市| 亚东县| 温州市| 织金县| 平邑县| 崇礼县| 湘潭县| 屯昌县| 石河子市| 保亭| 长治县| 镇江市| 屯留县| 无极县| 玛纳斯县| 天台县| 瑞金市| 上栗县| 惠安县| 临朐县| 青河县| 原阳县| 克什克腾旗| 扎兰屯市| 敦煌市| 县级市| 盱眙县| 沙田区| 惠州市| 延寿县| 西充县| 驻马店市| 乐都县| 土默特左旗| 吉隆县| 延川县| 新巴尔虎右旗|