找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis of Quasilinear Inequalities on Complete Manifolds; Maximum and Compact Bruno Bianchini,Luciano Mari,Marco Rigoli Book 2

[復制鏈接]
樓主: Awkward
11#
發(fā)表于 2025-3-23 10:16:12 | 只看該作者
https://doi.org/10.1007/978-981-99-9569-1Consider the problem . We recall that an end Ω???. is a connected component with non-compact closure of .?., for some compact set ..
12#
發(fā)表于 2025-3-23 15:36:24 | 只看該作者
Discourse, the Body, and IdentityIn this section, we relate the Keller–Osserman condition . to the strong Liouville property (SL) for solutions of (..). It is particularly interesting to see how geometry comes into play via the validity of the weak or the strong maximum principle for (.). Δ.. Hereafter, we require . and moreover
13#
發(fā)表于 2025-3-23 21:29:15 | 只看該作者
Preliminaries from Riemannian Geometry,We briefly recall some facts from Riemannian Geometry, mostly to fix notation and conventions. Our main source for the present chapter is P. Petersen’s book. Let (.., 〈 , 〉) be a connected Riemannian manifold. We denote with ? the Levi–Civita connection induced by 〈 , 〉, and with . the (4, 0) curvature tensor of ?, with the usual sign agreement
14#
發(fā)表于 2025-3-24 01:13:27 | 只看該作者
15#
發(fā)表于 2025-3-24 05:34:50 | 只看該作者
Boundary Value Problems for Nonlinear ODEs,At the beginning of Chap. ., we observed that to find radial solutions of (..) and (..) one is lead to solve the following ODE: . on an interval of ., where we have extended . to an odd function on all of .. The functions .. and . are bounds, respectively, for the volume of geodesic spheres of . and for ..
16#
發(fā)表于 2025-3-24 07:27:20 | 只看該作者
Comparison Results and the Finite Maximum Principle,In this section, we collect two comparison theorems and a “pasting lemma” for Lip. solutions that will be repeatedly used in the sequel. Throughout the section, we assume
17#
發(fā)表于 2025-3-24 13:16:43 | 只看該作者
18#
發(fā)表于 2025-3-24 18:26:15 | 只看該作者
,Strong Maximum Principle and Khas’minskii Potentials,The aim of this section is to prove Theorem . in the Introduction. We observe that the argument is based on the existence of what we call a “Khas’minskii potential”, according to the following.
19#
發(fā)表于 2025-3-24 22:38:33 | 只看該作者
20#
發(fā)表于 2025-3-25 00:03:39 | 只看該作者
,Keller–Osserman, A Priori Estimates and the (,) Property,In this section, we relate the Keller–Osserman condition . to the strong Liouville property (SL) for solutions of (..). It is particularly interesting to see how geometry comes into play via the validity of the weak or the strong maximum principle for (.). Δ.. Hereafter, we require . and moreover
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新晃| 揭西县| 武夷山市| 两当县| 汤阴县| 甘孜县| 青田县| 海城市| 嘉定区| 罗定市| 磐石市| 阿克| 合水县| 苏尼特右旗| 安徽省| 玛曲县| 北安市| 剑川县| 滕州市| 黔西县| 沙河市| 连平县| 囊谦县| 博爱县| 新和县| 木兰县| 将乐县| 荆门市| 日土县| 莫力| 容城县| 房山区| 建昌县| 乌拉特后旗| 伽师县| 咸宁市| 南江县| 元谋县| 邵东县| 诸城市| 杨浦区|