找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis of Quasilinear Inequalities on Complete Manifolds; Maximum and Compact Bruno Bianchini,Luciano Mari,Marco Rigoli Book 2

[復(fù)制鏈接]
查看: 55923|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:44:17 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds
副標(biāo)題Maximum and Compact
編輯Bruno Bianchini,Luciano Mari,Marco Rigoli
視頻videohttp://file.papertrans.cn/384/383452/383452.mp4
概述Investigates the validity of strong maximum principles, compact support principles and Liouville type theorems.Aims to give a unified view of recent results in the literature
叢書(shū)名稱(chēng)Frontiers in Mathematics
圖書(shū)封面Titlebook: Geometric Analysis of Quasilinear Inequalities on Complete Manifolds; Maximum and Compact  Bruno Bianchini,Luciano Mari,Marco Rigoli Book 2
描述This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improv
出版日期Book 2021
關(guān)鍵詞Coercive Differential Inequalities; Compact Support Principle; Liouville Properties; Maximum Principle;
版次1
doihttps://doi.org/10.1007/978-3-030-62704-1
isbn_softcover978-3-030-62703-4
isbn_ebook978-3-030-62704-1Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds影響因子(影響力)




書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds被引頻次




書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds年度引用




書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds讀者反饋




書(shū)目名稱(chēng)Geometric Analysis of Quasilinear Inequalities on Complete Manifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:07:13 | 只看該作者
Book 2021of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improv
板凳
發(fā)表于 2025-3-22 02:43:26 | 只看該作者
1660-8046 s a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau’s Hessian and Laplacian principles and subsequent improv978-3-030-62703-4978-3-030-62704-1Series ISSN 1660-8046 Series E-ISSN 1660-8054
地板
發(fā)表于 2025-3-22 08:32:46 | 只看該作者
Bruno Bianchini,Luciano Mari,Marco RigoliInvestigates the validity of strong maximum principles, compact support principles and Liouville type theorems.Aims to give a unified view of recent results in the literature
5#
發(fā)表于 2025-3-22 11:03:45 | 只看該作者
https://doi.org/10.1057/9780230523364We briefly recall some facts from Riemannian Geometry, mostly to fix notation and conventions. Our main source for the present chapter is P. Petersen’s book. Let (.., 〈 , 〉) be a connected Riemannian manifold. We denote with ? the Levi–Civita connection induced by 〈 , 〉, and with . the (4, 0) curvature tensor of ?, with the usual sign agreement
6#
發(fā)表于 2025-3-22 14:35:03 | 只看該作者
Representations of Internal States,The proof of some of our main results, for instance the (CSP), relies on the construction of a suitable radial solution of (..) or (..) to be compared with a given one. For convenience, hereafter we extend . to an odd function on all of . by setting
7#
發(fā)表于 2025-3-22 17:11:43 | 只看該作者
8#
發(fā)表于 2025-3-22 21:35:15 | 只看該作者
Discourse and Diversionary JusticeIn this section, we collect two comparison theorems and a “pasting lemma” for Lip. solutions that will be repeatedly used in the sequel. Throughout the section, we assume
9#
發(fā)表于 2025-3-23 04:16:25 | 只看該作者
10#
發(fā)表于 2025-3-23 08:17:58 | 只看該作者
Monica Heller,Mireille McLaughlinThe aim of this section is to prove Theorem . in the Introduction. We observe that the argument is based on the existence of what we call a “Khas’minskii potential”, according to the following.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沧州市| 肥乡县| 白河县| 安塞县| 荣成市| 武定县| 延寿县| 白城市| 汶上县| 金寨县| 南汇区| 墨玉县| 富平县| 金华市| 论坛| 咸阳市| 抚顺市| 乌兰浩特市| 保山市| 阿瓦提县| 陆川县| 珲春市| 大理市| 临潭县| 邓州市| 黎川县| 雅安市| 江源县| 淮安市| 黔江区| 门源| 光泽县| 蒙山县| 天祝| 班戈县| 贡觉县| 夏邑县| 柘城县| 呼和浩特市| 大丰市| 赤城县|