找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis; Cetraro, Italy 2018 Ailana Fraser,André Neves,Paul C. Yang,Matthew J. Book 2020 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: GURU
11#
發(fā)表于 2025-3-23 10:07:08 | 只看該作者
Extremal Eigenvalue Problems and Free Boundary Minimal Surfaces in the Ball,. Schoen on progress that has been made on the Steklov eigenvalue problem for surfaces with boundary, and in higher dimensions. For surfaces, the Steklov eigenvalue problem has a close connection to free boundary minimal surfaces in Euclidean balls. Specifically, metrics that maximize Steklov eigenv
12#
發(fā)表于 2025-3-23 15:50:36 | 只看該作者
,Applications of Min–Max Methods to Geometry,bject, motivated by . concerning the existence of infinitely-many ones. The main tools used here are a combination of techniques from Geometric Measure Theory and Minimal methods. The conjecture is proved for a large class of metrics and, via the concept of ., a density result is also derived.
13#
發(fā)表于 2025-3-23 18:16:25 | 只看該作者
Ricci Flow and Ricci Limit Spaces,number of famous open problems in geometry and topology such as the Poincaré conjecture and Thurston’s Geometrisation conjecture. In this chapter Ricci flow theory is studied in unfamiliar situations in order to solve different types of problems. Everything revolves around understanding flows with u
14#
發(fā)表于 2025-3-23 22:23:38 | 只看該作者
15#
發(fā)表于 2025-3-24 02:51:48 | 只看該作者
16#
發(fā)表于 2025-3-24 08:36:59 | 只看該作者
0075-8434 overview of recent developments in geometric analysis.Based .This book covers recent advances in several important areas of geometric analysis including extremal eigenvalue problems, mini-max methods in minimal surfaces, CR geometry in dimension three, and the Ricci flow and Ricci limit spaces. An o
17#
發(fā)表于 2025-3-24 14:01:02 | 只看該作者
18#
發(fā)表于 2025-3-24 16:05:01 | 只看該作者
Inclusive Education in Bangladeshitz operator and the attainment of the Yamabe quotient. Finally, some surface theory is treated, in relation to the isoperimetic problem, the prescribed mean curvature problem and to some Willmore-type functionals.
19#
發(fā)表于 2025-3-24 22:07:14 | 只看該作者
Ricci Flow and Ricci Limit Spaces,nbounded curvature on noncompact manifolds, possibly with very rough initial data, and the lectures describe some of the new phenomena that arise in these situations. After describing a complete theory for two-dimensional underlying manifolds, recent work is described in the three-dimensional case with applications to Ricci limit spaces.
20#
發(fā)表于 2025-3-24 23:13:43 | 只看該作者
Pseudo-Hermitian Geometry in 3D,itz operator and the attainment of the Yamabe quotient. Finally, some surface theory is treated, in relation to the isoperimetic problem, the prescribed mean curvature problem and to some Willmore-type functionals.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莆田市| 五指山市| 从化市| 任丘市| 金山区| 临沭县| 安岳县| 鲜城| 阜新| 浪卡子县| 南澳县| 北安市| 南江县| 顺昌县| 峨山| 株洲县| 万荣县| 浪卡子县| 绍兴市| 西安市| 休宁县| 龙里县| 阳高县| 南川市| 久治县| 二连浩特市| 普格县| 翁牛特旗| 柳江县| 岳阳市| 渝中区| 榆林市| 墨江| 志丹县| 牟定县| 林周县| 延吉市| 鄂托克旗| 佛坪县| 会同县| 当阳市|