找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Analysis; Cetraro, Italy 2018 Ailana Fraser,André Neves,Paul C. Yang,Matthew J. Book 2020 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 8496|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:39:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometric Analysis
副標(biāo)題Cetraro, Italy 2018
編輯Ailana Fraser,André Neves,Paul C. Yang,Matthew J.
視頻videohttp://file.papertrans.cn/384/383446/383446.mp4
概述The CIME Summer Schools have been held since 1954, and the lecture notes are highly regarded in the mathematical community.Provides a broad overview of recent developments in geometric analysis.Based
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometric Analysis; Cetraro, Italy 2018 Ailana Fraser,André Neves,Paul C. Yang,Matthew J.  Book 2020 The Editor(s) (if applicable) and The
描述.This book covers recent advances in several important areas of geometric analysis including extremal eigenvalue problems, mini-max methods in minimal surfaces, CR geometry in dimension three, and the Ricci flow and Ricci limit spaces. An output of the CIME Summer School "Geometric Analysis" held in Cetraro in 2018, it offers a collection of lecture notes?prepared by Ailana Fraser (UBC), André?Neves (Chicago), Peter M. Topping (Warwick), and Paul C. Yang (Princeton).?.These notes will be a valuable asset for researchers and advanced graduate students in geometric analysis.?.
出版日期Book 2020
關(guān)鍵詞Differential Geometry; Eigenvalue Problems; Geometric Analysis; Minimal Surfaces; Pseudo-hermitian Geome
版次1
doihttps://doi.org/10.1007/978-3-030-53725-8
isbn_softcover978-3-030-53724-1
isbn_ebook978-3-030-53725-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Geometric Analysis影響因子(影響力)




書目名稱Geometric Analysis影響因子(影響力)學(xué)科排名




書目名稱Geometric Analysis網(wǎng)絡(luò)公開度




書目名稱Geometric Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Analysis被引頻次




書目名稱Geometric Analysis被引頻次學(xué)科排名




書目名稱Geometric Analysis年度引用




書目名稱Geometric Analysis年度引用學(xué)科排名




書目名稱Geometric Analysis讀者反饋




書目名稱Geometric Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:41:57 | 只看該作者
,Applications of Min–Max Methods to Geometry,bject, motivated by . concerning the existence of infinitely-many ones. The main tools used here are a combination of techniques from Geometric Measure Theory and Minimal methods. The conjecture is proved for a large class of metrics and, via the concept of ., a density result is also derived.
板凳
發(fā)表于 2025-3-22 00:42:02 | 只看該作者
地板
發(fā)表于 2025-3-22 05:00:12 | 只看該作者
978-3-030-53724-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
5#
發(fā)表于 2025-3-22 09:34:08 | 只看該作者
Geometric Analysis978-3-030-53725-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
6#
發(fā)表于 2025-3-22 13:09:12 | 只看該作者
7#
發(fā)表于 2025-3-22 19:47:56 | 只看該作者
Healthy Lifestyles and Primary Healthcare,. Schoen on progress that has been made on the Steklov eigenvalue problem for surfaces with boundary, and in higher dimensions. For surfaces, the Steklov eigenvalue problem has a close connection to free boundary minimal surfaces in Euclidean balls. Specifically, metrics that maximize Steklov eigenv
8#
發(fā)表于 2025-3-22 22:10:42 | 只看該作者
Disability Studies and Higher Education,bject, motivated by . concerning the existence of infinitely-many ones. The main tools used here are a combination of techniques from Geometric Measure Theory and Minimal methods. The conjecture is proved for a large class of metrics and, via the concept of ., a density result is also derived.
9#
發(fā)表于 2025-3-23 02:56:12 | 只看該作者
10#
發(fā)表于 2025-3-23 07:06:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固阳县| 信阳市| 民县| 静乐县| 竹北市| 吉安县| 抚宁县| 义乌市| 高邮市| 武川县| 马公市| 庆城县| 砚山县| 丰宁| 鹤峰县| 汝阳县| 大余县| 喀喇| 临沧市| 安泽县| 德保县| 包头市| 鹤峰县| 翼城县| 山东省| 天峻县| 光泽县| 贵阳市| 天等县| 洪江市| 哈尔滨市| 潼南县| 曲阳县| 扶沟县| 弥勒县| 台中市| 阜南县| 永吉县| 抚顺市| 江都市| 平陆县|