找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic Flows; Gabriel P. Paternain Book 1999 Springer Science+Business Media New York 1999 Fundamental group.Loop group.Riemannian manif

[復(fù)制鏈接]
樓主: Tamoxifen
11#
發(fā)表于 2025-3-23 12:03:01 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:35 | 只看該作者
https://doi.org/10.1007/978-3-663-16096-0c flows have the remarkable property of being at the intersection of various branches in mathematics; this gives them a rich structure and makes them an exciting subject of research with a long tradition.
13#
發(fā)表于 2025-3-23 18:28:53 | 只看該作者
M?nnlichkeit und Arbeitskraftunternehmern important property of the vertical subbundle which we call the .. This property reflects the fact that the geodesic flow arises from a second order differential equation on .. Next we derive the Riccati equations, after which we introduce the Grassmannian bundle of Lagrangian subspaces and show ho
14#
發(fā)表于 2025-3-24 01:30:14 | 只看該作者
15#
發(fā)表于 2025-3-24 02:40:47 | 只看該作者
16#
發(fā)表于 2025-3-24 06:52:43 | 只看該作者
17#
發(fā)表于 2025-3-24 10:49:52 | 只看該作者
18#
發(fā)表于 2025-3-24 15:36:40 | 只看該作者
0743-1643 ggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank978-1-4612-7212-0978-1-4612-1600-1Series ISSN 0743-1643 Series E-ISSN 2296-505X
19#
發(fā)表于 2025-3-24 20:32:01 | 只看該作者
20#
發(fā)表于 2025-3-25 00:30:54 | 只看該作者
Book 1999e close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane‘s formula that relates the topological entropy of the geodesic flow with
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元朗区| 宜宾县| 吉隆县| 屏山县| 平和县| 南平市| 札达县| 徐州市| 攀枝花市| 扶绥县| 霸州市| 凤山县| 库车县| 寿宁县| 台山市| 德钦县| 襄汾县| 托里县| 靖宇县| 兴山县| 双江| 化德县| 将乐县| 揭阳市| 武定县| 海淀区| 甘南县| 茌平县| 喜德县| 吉隆县| 铜川市| 桐梓县| 平武县| 都江堰市| 库尔勒市| 陵川县| 汾西县| 古交市| 元氏县| 阳原县| 和硕县|