找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic Flows; Gabriel P. Paternain Book 1999 Springer Science+Business Media New York 1999 Fundamental group.Loop group.Riemannian manif

[復(fù)制鏈接]
查看: 16681|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:38:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geodesic Flows
編輯Gabriel P. Paternain
視頻videohttp://file.papertrans.cn/384/383098/383098.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Geodesic Flows;  Gabriel P. Paternain Book 1999 Springer Science+Business Media New York 1999 Fundamental group.Loop group.Riemannian manif
描述The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane‘s formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank
出版日期Book 1999
關(guān)鍵詞Fundamental group; Loop group; Riemannian manifold; curvature; differential geometry; dynamical systems; e
版次1
doihttps://doi.org/10.1007/978-1-4612-1600-1
isbn_softcover978-1-4612-7212-0
isbn_ebook978-1-4612-1600-1Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1999
The information of publication is updating

書目名稱Geodesic Flows影響因子(影響力)




書目名稱Geodesic Flows影響因子(影響力)學(xué)科排名




書目名稱Geodesic Flows網(wǎng)絡(luò)公開度




書目名稱Geodesic Flows網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geodesic Flows被引頻次




書目名稱Geodesic Flows被引頻次學(xué)科排名




書目名稱Geodesic Flows年度引用




書目名稱Geodesic Flows年度引用學(xué)科排名




書目名稱Geodesic Flows讀者反饋




書目名稱Geodesic Flows讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:31:04 | 只看該作者
,Die Molybd?n- und Vanadinst?hle,In this chapter we introduce the counting functions and we relate them to the topological entropy ..(.) of the geodesic flow of ..
板凳
發(fā)表于 2025-3-22 04:27:53 | 只看該作者
Heinz Ismar,Günther Lange,Wilhelm KrelleIn this chapter we present a proof of Ma?é’s formula for geodesic flows and convex billiards. The proof rests on the twist property of the vertical subbundle that we described in Chapter 2, Pesin’s theory which enters via Przytycki’s inequality and a very clever change of variables which is useful also in other situations (cf. Proposition 4.8).
地板
發(fā)表于 2025-3-22 07:14:12 | 只看該作者
5#
發(fā)表于 2025-3-22 09:02:12 | 只看該作者
6#
發(fā)表于 2025-3-22 14:12:33 | 只看該作者
,Ma?é’s Formula for Geodesic Flows and Convex Billiards,In this chapter we present a proof of Ma?é’s formula for geodesic flows and convex billiards. The proof rests on the twist property of the vertical subbundle that we described in Chapter 2, Pesin’s theory which enters via Przytycki’s inequality and a very clever change of variables which is useful also in other situations (cf. Proposition 4.8).
7#
發(fā)表于 2025-3-22 20:34:04 | 只看該作者
8#
發(fā)表于 2025-3-22 23:15:49 | 只看該作者
9#
發(fā)表于 2025-3-23 03:36:55 | 只看該作者
10#
發(fā)表于 2025-3-23 07:25:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新安县| 平潭县| 长阳| 托克逊县| 洛南县| 明水县| 太保市| 通海县| 广灵县| 丰顺县| 资源县| 商水县| 蕉岭县| 清流县| 扎囊县| 宝清县| 乌恰县| 新郑市| 宜君县| 普陀区| 平利县| 大田县| 仪陇县| 巴林右旗| 左云县| 繁峙县| 上虞市| 渑池县| 武功县| 孝义市| 全州县| 石泉县| 图木舒克市| 新竹县| 通江县| 房山区| 保亭| 神木县| 沙田区| 台南县| 达日县|