找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic and Evolutionary Computation — GECCO 2003; Genetic and Evolutio Erick Cantú-Paz,James A. Foster,Julian Miller Conference proceeding

[復制鏈接]
查看: 38888|回復: 61
樓主
發(fā)表于 2025-3-21 16:16:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Genetic and Evolutionary Computation — GECCO 2003
副標題Genetic and Evolutio
編輯Erick Cantú-Paz,James A. Foster,Julian Miller
視頻videohttp://file.papertrans.cn/383/382650/382650.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Genetic and Evolutionary Computation — GECCO 2003; Genetic and Evolutio Erick Cantú-Paz,James A. Foster,Julian Miller Conference proceeding
出版日期Conference proceedings 2003
關鍵詞algorithm; algorithms; coevolution; evolution; genetic algorithms; genetic programming; hardware; learning;
版次1
doihttps://doi.org/10.1007/3-540-45110-2
isbn_softcover978-3-540-40603-7
isbn_ebook978-3-540-45110-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

書目名稱Genetic and Evolutionary Computation — GECCO 2003影響因子(影響力)




書目名稱Genetic and Evolutionary Computation — GECCO 2003影響因子(影響力)學科排名




書目名稱Genetic and Evolutionary Computation — GECCO 2003網(wǎng)絡公開度




書目名稱Genetic and Evolutionary Computation — GECCO 2003網(wǎng)絡公開度學科排名




書目名稱Genetic and Evolutionary Computation — GECCO 2003被引頻次




書目名稱Genetic and Evolutionary Computation — GECCO 2003被引頻次學科排名




書目名稱Genetic and Evolutionary Computation — GECCO 2003年度引用




書目名稱Genetic and Evolutionary Computation — GECCO 2003年度引用學科排名




書目名稱Genetic and Evolutionary Computation — GECCO 2003讀者反饋




書目名稱Genetic and Evolutionary Computation — GECCO 2003讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:30 | 只看該作者
Reinforcement Learning Estimation of Distribution Algorithmpromising solutions to generate a new population of solutions. We call it Reinforcement Learning Estimation of Distribution Algorithm (RELEDA). For the estimation of the joint probability distribution we consider each variable as univariate. Then we update the probability of each variable by applyin
板凳
發(fā)表于 2025-3-22 01:07:50 | 只看該作者
Hierarchical BOA Solves Ising Spin Glasses and MAXSAT anything easier. This paper applies hBOA to two important classes of real-world problems: Ising spin-glass systems and maximum satisfiability (MAXSAT). The paper shows how easy it is to apply hBOA to real-world optimization problems—in most cases hBOA can be applied without any prior problem analys
地板
發(fā)表于 2025-3-22 04:57:48 | 只看該作者
ERA: An Algorithm for Reducing the Epistasis of SAT Problemsroduces a more suited representation (with lower epistasis) for a Genetic Algorithm (GA) by preprocessing the original SAT problem; and b) A Genetic Algorithm that solves the preprocesed instances..ERA is implemented by a simulated annealing algorithm (SA), which transforms the original SAT problem
5#
發(fā)表于 2025-3-22 11:11:45 | 只看該作者
Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heurnge of problems. To be worthwhile, such a combination should outperform all of the constituent heuristics. In this paper we describe a novel messy-GA-based approach that learns such a heuristic combination for solving one-dimensional bin-packing problems. When applied to a large set of benchmark pro
6#
發(fā)表于 2025-3-22 15:54:48 | 只看該作者
Population Sizing for the Redundant Trivial Voting Mappingundant representation for binary phenotypes. A population sizing model is presented that quantitatively predicts the influence of the TV mapping and variants of this encoding on the performance of GAs. The results indicate that when using this encoding GA performance depends on the influence of the
7#
發(fā)表于 2025-3-22 17:15:39 | 只看該作者
Non-stationary Function Optimization Using Polygenic Inheritanceing target, and tend to converge on a local optimum that appears early in a run..It is generally accepted that diploid GAs can cope with these problems because they have a ., that is, genes that may be required in the future are maintained in the current population. This paper describes a haploid GA
8#
發(fā)表于 2025-3-22 21:42:45 | 只看該作者
Scalability of Selectorecombinative Genetic Algorithms for Problems with Tight Linkage the BB mixing time and the population sizing dictated by BB mixing for single-point crossover. The population-sizing model suggests that for moderate-to-large problems, BB mixing – instead of BB decision making and BB supply – bounds the population size required to obtain a solution of constant qua
9#
發(fā)表于 2025-3-23 04:24:45 | 只看該作者
New Entropy-Based Measures of Gene Significance and Epistasissuggest three epistasis-related measures: gene significance, gene epistasis, and problem epistasis. The measures are believed to be helpful to investigate both the individual epistasis of a gene group and the overall epistasis that a problem has. The experimental results on various well-known proble
10#
發(fā)表于 2025-3-23 08:39:43 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
霍山县| 吉林省| 江北区| 罗源县| 分宜县| 鹿泉市| 贵阳市| 黑龙江省| 遂平县| 祁门县| 林州市| 客服| 德惠市| 宣武区| 桃园市| 崇义县| 长沙市| 安龙县| 克拉玛依市| 团风县| 洪江市| 临江市| 长岭县| 阿克苏市| 东兰县| 桓台县| 军事| 正蓝旗| 延长县| 重庆市| 冀州市| 玉门市| 垫江县| 兖州市| 景东| 枣强县| 黎城县| 偃师市| 清涧县| 正宁县| 治多县|