找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic and Evolutionary Computation — GECCO 2003; Genetic and Evolutio Erick Cantú-Paz,James A. Foster,Julian Miller Conference proceeding

[復(fù)制鏈接]
查看: 38893|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:16:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003
副標(biāo)題Genetic and Evolutio
編輯Erick Cantú-Paz,James A. Foster,Julian Miller
視頻videohttp://file.papertrans.cn/383/382650/382650.mp4
叢書(shū)名稱Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Genetic and Evolutionary Computation — GECCO 2003; Genetic and Evolutio Erick Cantú-Paz,James A. Foster,Julian Miller Conference proceeding
出版日期Conference proceedings 2003
關(guān)鍵詞algorithm; algorithms; coevolution; evolution; genetic algorithms; genetic programming; hardware; learning;
版次1
doihttps://doi.org/10.1007/3-540-45110-2
isbn_softcover978-3-540-40603-7
isbn_ebook978-3-540-45110-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003影響因子(影響力)




書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003影響因子(影響力)學(xué)科排名




書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003被引頻次




書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003被引頻次學(xué)科排名




書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003年度引用




書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003年度引用學(xué)科排名




書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003讀者反饋




書(shū)目名稱Genetic and Evolutionary Computation — GECCO 2003讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:30 | 只看該作者
Reinforcement Learning Estimation of Distribution Algorithmpromising solutions to generate a new population of solutions. We call it Reinforcement Learning Estimation of Distribution Algorithm (RELEDA). For the estimation of the joint probability distribution we consider each variable as univariate. Then we update the probability of each variable by applyin
板凳
發(fā)表于 2025-3-22 01:07:50 | 只看該作者
Hierarchical BOA Solves Ising Spin Glasses and MAXSAT anything easier. This paper applies hBOA to two important classes of real-world problems: Ising spin-glass systems and maximum satisfiability (MAXSAT). The paper shows how easy it is to apply hBOA to real-world optimization problems—in most cases hBOA can be applied without any prior problem analys
地板
發(fā)表于 2025-3-22 04:57:48 | 只看該作者
ERA: An Algorithm for Reducing the Epistasis of SAT Problemsroduces a more suited representation (with lower epistasis) for a Genetic Algorithm (GA) by preprocessing the original SAT problem; and b) A Genetic Algorithm that solves the preprocesed instances..ERA is implemented by a simulated annealing algorithm (SA), which transforms the original SAT problem
5#
發(fā)表于 2025-3-22 11:11:45 | 只看該作者
Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heurnge of problems. To be worthwhile, such a combination should outperform all of the constituent heuristics. In this paper we describe a novel messy-GA-based approach that learns such a heuristic combination for solving one-dimensional bin-packing problems. When applied to a large set of benchmark pro
6#
發(fā)表于 2025-3-22 15:54:48 | 只看該作者
Population Sizing for the Redundant Trivial Voting Mappingundant representation for binary phenotypes. A population sizing model is presented that quantitatively predicts the influence of the TV mapping and variants of this encoding on the performance of GAs. The results indicate that when using this encoding GA performance depends on the influence of the
7#
發(fā)表于 2025-3-22 17:15:39 | 只看該作者
Non-stationary Function Optimization Using Polygenic Inheritanceing target, and tend to converge on a local optimum that appears early in a run..It is generally accepted that diploid GAs can cope with these problems because they have a ., that is, genes that may be required in the future are maintained in the current population. This paper describes a haploid GA
8#
發(fā)表于 2025-3-22 21:42:45 | 只看該作者
Scalability of Selectorecombinative Genetic Algorithms for Problems with Tight Linkage the BB mixing time and the population sizing dictated by BB mixing for single-point crossover. The population-sizing model suggests that for moderate-to-large problems, BB mixing – instead of BB decision making and BB supply – bounds the population size required to obtain a solution of constant qua
9#
發(fā)表于 2025-3-23 04:24:45 | 只看該作者
New Entropy-Based Measures of Gene Significance and Epistasissuggest three epistasis-related measures: gene significance, gene epistasis, and problem epistasis. The measures are believed to be helpful to investigate both the individual epistasis of a gene group and the overall epistasis that a problem has. The experimental results on various well-known proble
10#
發(fā)表于 2025-3-23 08:39:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大英县| 望谟县| 壤塘县| 鄂伦春自治旗| 哈巴河县| 南川市| 札达县| 龙游县| 大新县| 安远县| 宁化县| 朝阳市| 太白县| 方城县| 阿鲁科尔沁旗| 东宁县| 金秀| 社旗县| 裕民县| 从江县| 鄂伦春自治旗| 眉山市| 富川| 承德县| 湖州市| 定日县| 萨嘎县| 晋宁县| 康保县| 阳朔县| 宝兴县| 嵩明县| 天柱县| 萍乡市| 曲沃县| 罗山县| 汪清县| 三门县| 七台河市| 北票市| 桃园市|