找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generative Intelligence and Intelligent Tutoring Systems; 20th International C Angelo Sifaleras,Fuhua Lin Conference proceedings 2024 The E

[復(fù)制鏈接]
樓主: 孵化
11#
發(fā)表于 2025-3-23 13:45:35 | 只看該作者
12#
發(fā)表于 2025-3-23 17:19:11 | 只看該作者
Cranial, Craniofacial and Skull Base Surgeryization and design of a variety of learning tools, with particular interest given to digital games. Several studies are investigating their effectiveness in learning CT, however more research is needed on the specific features of these tools, such as scaffolding features. This study evaluates a scaf
13#
發(fā)表于 2025-3-23 19:14:59 | 只看該作者
Cranio-Spinal Surgery with the Ronjair?onses. Most deep learning-based KT models have suffered from attributions of KT datasets such as the data sparsity, changeability of the knowledge state, and educational domain. Recently, most KT models use attention mechanisms to solve these problems. However, few studies tried to redesign the atte
14#
發(fā)表于 2025-3-24 02:02:25 | 只看該作者
15#
發(fā)表于 2025-3-24 03:24:38 | 只看該作者
https://doi.org/10.1007/978-1-4612-2466-2iate qualitative measures is proposed to extract behavioral sequences that are representative of learning success. Applied on an online programming platform, obtained results allowed to highlight important self-regulation behaviors during the planning and engagement phases. It e.g. appears that succ
16#
發(fā)表于 2025-3-24 07:01:33 | 只看該作者
17#
發(fā)表于 2025-3-24 14:37:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:38:17 | 只看該作者
Karin De La Fuente,Kevin E. Bright To achieve this goal, many researchers have proposed KT models that use data from Intelligent Tutoring Systems (ITS) to predict students’ subsequent actions. However, with the development of ITS, large-scale datasets containing long-sequence data began to emerge. Recent deep learning based KT model
19#
發(fā)表于 2025-3-24 22:46:29 | 只看該作者
20#
發(fā)表于 2025-3-25 01:34:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洪湖市| 临洮县| 青川县| 桐乡市| 陕西省| 普宁市| 阳西县| 古浪县| 阳曲县| 高陵县| 永德县| 来宾市| SHOW| 霍州市| 阜南县| 通江县| 自治县| 威信县| 博湖县| SHOW| 禹州市| 依安县| 尼勒克县| 蚌埠市| 嘉善县| 余江县| 神池县| 炎陵县| 宣武区| 新郑市| 舟曲县| 阜宁县| 本溪| 八宿县| 巴彦县| 涟源市| 神木县| 新宾| 宁城县| 寿宁县| 西充县|