找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generative Intelligence and Intelligent Tutoring Systems; 20th International C Angelo Sifaleras,Fuhua Lin Conference proceedings 2024 The E

[復(fù)制鏈接]
樓主: 孵化
11#
發(fā)表于 2025-3-23 13:45:35 | 只看該作者
12#
發(fā)表于 2025-3-23 17:19:11 | 只看該作者
Cranial, Craniofacial and Skull Base Surgeryization and design of a variety of learning tools, with particular interest given to digital games. Several studies are investigating their effectiveness in learning CT, however more research is needed on the specific features of these tools, such as scaffolding features. This study evaluates a scaf
13#
發(fā)表于 2025-3-23 19:14:59 | 只看該作者
Cranio-Spinal Surgery with the Ronjair?onses. Most deep learning-based KT models have suffered from attributions of KT datasets such as the data sparsity, changeability of the knowledge state, and educational domain. Recently, most KT models use attention mechanisms to solve these problems. However, few studies tried to redesign the atte
14#
發(fā)表于 2025-3-24 02:02:25 | 只看該作者
15#
發(fā)表于 2025-3-24 03:24:38 | 只看該作者
https://doi.org/10.1007/978-1-4612-2466-2iate qualitative measures is proposed to extract behavioral sequences that are representative of learning success. Applied on an online programming platform, obtained results allowed to highlight important self-regulation behaviors during the planning and engagement phases. It e.g. appears that succ
16#
發(fā)表于 2025-3-24 07:01:33 | 只看該作者
17#
發(fā)表于 2025-3-24 14:37:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:38:17 | 只看該作者
Karin De La Fuente,Kevin E. Bright To achieve this goal, many researchers have proposed KT models that use data from Intelligent Tutoring Systems (ITS) to predict students’ subsequent actions. However, with the development of ITS, large-scale datasets containing long-sequence data began to emerge. Recent deep learning based KT model
19#
發(fā)表于 2025-3-24 22:46:29 | 只看該作者
20#
發(fā)表于 2025-3-25 01:34:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鸡西市| 浦县| 鹿泉市| 比如县| 高青县| 大城县| 灌阳县| 如皋市| 静宁县| 峨眉山市| 安远县| 敦煌市| 哈巴河县| 稻城县| 墨玉县| 辽阳县| 灵山县| 丰都县| 贡觉县| 通江县| 达孜县| 察雅县| 迁西县| 柳河县| 赣州市| 乌兰浩特市| 凤台县| 沂南县| 景德镇市| 定兴县| 广灵县| 临漳县| 五寨县| 客服| 崇文区| 仪陇县| 黄冈市| 漳平市| 德惠市| 漾濞| 越西县|