找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Principal Component Analysis; René Vidal,Yi Ma,S.S. Sastry Textbook 2016 Springer-Verlag New York 2016 Principal component ana

[復(fù)制鏈接]
樓主: 你太謙虛
21#
發(fā)表于 2025-3-25 04:32:26 | 只看該作者
Nonlinear and Nonparametric Extensionsl circle embedded in a high-dimensional space, whose structure is not well captured by a one-dimensional line. More generally, a collection of face images observed from different viewpoints is not well approximated by a single linear or affine subspace, as illustrated in the following example.
22#
發(fā)表于 2025-3-25 10:22:57 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:44 | 只看該作者
Statistical Methodse in the data, they do not make explicit assumptions about the distribution of the noise or the data inside the subspaces. Therefore, the estimated subspaces need not be optimal from a statistical perspective, e.g., in a maximum likelihood (ML) sense.
24#
發(fā)表于 2025-3-25 18:38:57 | 只看該作者
Motion Segmentationpaces to represent and segment time series, e.g., video and motion capture data. In particular, we will use different subspaces to account for multiple characteristics of the dynamics of a time series, such as multiple moving objects or multiple temporal events.
25#
發(fā)表于 2025-3-25 20:39:03 | 只看該作者
26#
發(fā)表于 2025-3-26 01:52:53 | 只看該作者
27#
發(fā)表于 2025-3-26 06:38:19 | 只看該作者
Optical Physics and EngineeringPrincipal component analysis (PCA) is the problem of fitting a low-dimensional affine subspace to a set of data points in a high-dimensional space. PCA is, by now, well established in the literature, and has become one of the most useful tools for data modeling, compression, and visualization.
28#
發(fā)表于 2025-3-26 09:11:25 | 只看該作者
https://doi.org/10.1007/978-3-319-28100-1In the previous chapter, we considered the PCA problem under the assumption that all the sample points are drawn from the same statistical or geometric model: a low-dimensional subspace.
29#
發(fā)表于 2025-3-26 13:58:43 | 只看該作者
Michael Mix MD,Anurag K. Singh MDIn this chapter, we consider a generalization of PCA in which the given sample points are drawn from an unknown arrangement of subspaces of unknown and possibly different dimensions.
30#
發(fā)表于 2025-3-26 16:47:00 | 只看該作者
Mediation and the Ending of ConflictsIn this and the following chapters, we demonstrate why multiple subspaces can be a very useful class of models for image processing and how the subspace clustering techniques may facilitate many important image processing tasks, such as image representation, compression, image segmentation, and video segmentation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全南县| 手机| 赤水市| 灵璧县| 卢氏县| 武川县| 永城市| 喀喇沁旗| 项城市| 甘孜| 巴林左旗| 个旧市| 昌宁县| 滕州市| 兴城市| 互助| 梁平县| 霍山县| 清远市| 巴林右旗| 仙居县| 洛扎县| 汕头市| 阿拉善右旗| 探索| 深泽县| 喜德县| 丰宁| 依兰县| 舞钢市| 大同县| 武宁县| 荆门市| 雅安市| 巴彦淖尔市| 玉林市| 壶关县| 高州市| 衢州市| 德安县| 扎赉特旗|