找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Principal Component Analysis; René Vidal,Yi Ma,S.S. Sastry Textbook 2016 Springer-Verlag New York 2016 Principal component ana

[復(fù)制鏈接]
查看: 38535|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:28:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Generalized Principal Component Analysis
編輯René Vidal,Yi Ma,S.S. Sastry
視頻videohttp://file.papertrans.cn/383/382247/382247.mp4
概述Introduces fundamental statistical, geometric and algebraic concepts.Encompasses relevant data clustering and modeling methods in machine learning.Addresses a general class of unsupervised learning pr
叢書(shū)名稱Interdisciplinary Applied Mathematics
圖書(shū)封面Titlebook: Generalized Principal Component Analysis;  René Vidal,Yi Ma,S.S. Sastry Textbook 2016 Springer-Verlag New York 2016 Principal component ana
描述.This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. .This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book..René.?Vidal.?is a Professor of Biomedical Engineering and Director of the Vision Dynam
出版日期Textbook 2016
關(guān)鍵詞Principal component analysis; Robust principal component analysis; Manifold learning; Spectral clusteri
版次1
doihttps://doi.org/10.1007/978-0-387-87811-9
isbn_softcover978-1-4939-7912-7
isbn_ebook978-0-387-87811-9Series ISSN 0939-6047 Series E-ISSN 2196-9973
issn_series 0939-6047
copyrightSpringer-Verlag New York 2016
The information of publication is updating

書(shū)目名稱Generalized Principal Component Analysis影響因子(影響力)




書(shū)目名稱Generalized Principal Component Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Generalized Principal Component Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Generalized Principal Component Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Generalized Principal Component Analysis被引頻次




書(shū)目名稱Generalized Principal Component Analysis被引頻次學(xué)科排名




書(shū)目名稱Generalized Principal Component Analysis年度引用




書(shū)目名稱Generalized Principal Component Analysis年度引用學(xué)科排名




書(shū)目名稱Generalized Principal Component Analysis讀者反饋




書(shū)目名稱Generalized Principal Component Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:01 | 只看該作者
Statistical Methodsnd geometry of multiple subspaces, which leads to simple and elegant subspace clustering algorithms. However, while these methods can handle some noise in the data, they do not make explicit assumptions about the distribution of the noise or the data inside the subspaces. Therefore, the estimated su
板凳
發(fā)表于 2025-3-22 02:15:34 | 只看該作者
Spectral Methodsption that the data are not corrupted, we saw in Chapter 5 that algebraic-geometric methods are able to solve the subspace clustering problem in full generality, allowing for an arbitrary union of different subspaces of any dimensions and in any orientations, as long as sufficiently many data points
地板
發(fā)表于 2025-3-22 06:52:47 | 只看該作者
Sparse and Low-Rank Methodsl methods for defining a subspace clustering affinity, and have noticed that we seem to be facing an important dilemma. On the one hand, local methods compute an affinity that depends only on the data points in a local neighborhood of each data point. Local methods can be rather efficient and somewh
5#
發(fā)表于 2025-3-22 11:44:10 | 只看該作者
6#
發(fā)表于 2025-3-22 16:03:44 | 只看該作者
7#
發(fā)表于 2025-3-22 19:24:45 | 只看該作者
Hybrid System Identificationchanges of dynamics. For instance, the continuous trajectory of a bouncing ball results from alternating between free fall and elastic contact with the ground. However, hybrid systems can also be used to describe a complex process or time series that does not itself exhibit discontinuous behaviors,
8#
發(fā)表于 2025-3-22 22:18:37 | 只看該作者
9#
發(fā)表于 2025-3-23 04:39:34 | 只看該作者
0939-6047 endices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book..René.?Vidal.?is a Professor of Biomedical Engineering and Director of the Vision Dynam978-1-4939-7912-7978-0-387-87811-9Series ISSN 0939-6047 Series E-ISSN 2196-9973
10#
發(fā)表于 2025-3-23 06:19:56 | 只看該作者
Sparse and Low-Rank Methodseoretical analysis that guarantees the correctness of clustering. Therefore, a natural question that arises is whether we can construct a subspace clustering affinity that utilizes global geometric relationships among all the data points, is computationally tractable when the dimension and number of
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和龙市| 安远县| 化德县| 营山县| 赤峰市| 金昌市| 大竹县| 大连市| 仙桃市| 桓台县| 年辖:市辖区| 长宁县| 安徽省| 浦县| 遵义市| 大竹县| 利川市| 常熟市| 乌拉特前旗| 武清区| 波密县| 曲靖市| 双流县| 鹤峰县| 扎兰屯市| 隆安县| 锦屏县| 天台县| 台江县| 安新县| 安龙县| 长治县| 银川市| 聂拉木县| 张家港市| 琼海市| 屏山县| 林周县| 阜城县| 三门县| 逊克县|