找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC; Didier Aussel,C.S. Lalitha Book 2017 Springer Nature Singapore Pte Lt

[復(fù)制鏈接]
樓主: 交叉路口
11#
發(fā)表于 2025-3-23 11:16:06 | 只看該作者
https://doi.org/10.1007/978-1-349-19867-2ufficient conditions ensuring that a set-valued map, in particular a normal operator, is single-valued. Any monotone set-valued map that is also lower semi-continuous at a given point of the interior of its domain is actually single-valued at this point. This famous result is due to Kenderov [.] in
12#
發(fā)表于 2025-3-23 17:21:32 | 只看該作者
Contemporary British Industrial Relationsolution set mapping of a second parametric optimization problem. To investigate them, their transformation into a one-level optimization problem is necessary. For that, different approaches can be used. Two of them are considered in this article: the transformation using the Karush–Kuhn–Tucker condi
13#
發(fā)表于 2025-3-23 20:22:49 | 只看該作者
14#
發(fā)表于 2025-3-23 22:29:31 | 只看該作者
15#
發(fā)表于 2025-3-24 06:06:11 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:56 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:53 | 只看該作者
https://doi.org/10.1007/978-1-349-19867-2rder to solve such difficult problem, a classical approach is to write the optimality conditions of each of the problems obtaining thus a variational inequality. If the objective functions are nondifferentiable, the variational inequality can be set-valued, that is defined by a point-to-set map. Ind
18#
發(fā)表于 2025-3-24 14:50:42 | 只看該作者
19#
發(fā)表于 2025-3-24 20:59:14 | 只看該作者
Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC978-981-10-4774-9Series ISSN 2364-6748 Series E-ISSN 2364-6756
20#
發(fā)表于 2025-3-25 00:27:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东莞市| 建瓯市| 永春县| 克拉玛依市| 军事| 邵东县| 丘北县| 渝中区| 霍林郭勒市| 尼木县| 临安市| 武宁县| 正阳县| 渝北区| 青河县| 唐山市| 松桃| 睢宁县| 福清市| 淮安市| 安岳县| 马关县| 阿城市| 临漳县| 华池县| 遂宁市| 高青县| 朔州市| 青河县| 厦门市| 息烽县| 惠安县| 冷水江市| 灯塔市| 龙山县| 北流市| 丰台区| 刚察县| 安新县| 宁远县| 泾源县|