找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC; Didier Aussel,C.S. Lalitha Book 2017 Springer Nature Singapore Pte Lt

[復(fù)制鏈接]
查看: 12434|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:37:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC
編輯Didier Aussel,C.S. Lalitha
視頻videohttp://file.papertrans.cn/383/382237/382237.mp4
概述Deals with three frontiers in applied mathematics: generalized Nash equilibrium problems, bi-level programming, and mathematical programs with equilibrium constants (MPECs), with equilibrium being the
叢書(shū)名稱Forum for Interdisciplinary Mathematics
圖書(shū)封面Titlebook: Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC;  Didier Aussel,C.S. Lalitha Book 2017 Springer Nature Singapore Pte Lt
描述.The book discusses three classes of problems: the generalized Nash equilibrium problems, the bilevel problems and the mathematical programming with equilibrium constraints? (MPEC). These problems interact through their mathematical analysis as well as their applications. The primary aim of the book is to present the modern tool of variational analysis and optimization, which are used to analyze these three classes of problems. All contributing authors are respected academicians, scientists and researchers from around the globe. These contributions are based on the lectures delivered by experts at CIMPA School, held at the University of Delhi, India, from 25 November–6 December 2013, and peer-reviewed by international experts...The book contains five chapters. Chapter 1 deals with nonsmooth, nonconvex bilevel optimization problems whose feasible set is described by using the graph of the solution set mapping of a parametric optimization problem. Chapter 2 describes a constraint qualification to MPECs considered as an application of calmness concept of multifunctions and is used to derive M-stationarity conditions for MPEC. Chapter 3 discusses the first- and second-order optimality
出版日期Book 2017
關(guān)鍵詞Bilevel Optimization Problem; Mathematical Programming; Equilibrium Constraints; Nash Equilibrium Probl
版次1
doihttps://doi.org/10.1007/978-981-10-4774-9
isbn_softcover978-981-13-3842-7
isbn_ebook978-981-10-4774-9Series ISSN 2364-6748 Series E-ISSN 2364-6756
issn_series 2364-6748
copyrightSpringer Nature Singapore Pte Ltd. 2017
The information of publication is updating

書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC影響因子(影響力)




書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC影響因子(影響力)學(xué)科排名




書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC被引頻次




書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC被引頻次學(xué)科排名




書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC年度引用




書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC年度引用學(xué)科排名




書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC讀者反饋




書(shū)目名稱Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:17:32 | 只看該作者
Optimality Conditions for Bilevel Programming: An Approach Through Variational Analysis,set and not described by any equalities and inequalities. In such a situation, we can view them as MPEC problems and develop necessary optimality conditions. We also relate various solution concepts in bilevel programming and establish some new connections. We study in considerable detail the notion
地板
發(fā)表于 2025-3-22 05:50:41 | 只看該作者
,Mechanism Design and Auctions for?Electricity Networks,nism design. Some of the results stemming from these models are the computation of an optimal allocation for the Independent System Operator, the study of equilibria (existence and uniqueness in particular) and the design of mechanisms to increase the social surplus. More generally, this field of re
5#
發(fā)表于 2025-3-22 12:43:21 | 只看該作者
Reflection Methods for Inverse Problems with Applications to Protein Conformation Determination,n of finitely many sets. In this chapter, we demonstrate that applied to a specific problem, the method can benefit from heuristics specific to said problem which exploit its special structure. In particular, we focus on the problem of protein conformation determination formulated within the framewo
6#
發(fā)表于 2025-3-22 16:10:09 | 只看該作者
7#
發(fā)表于 2025-3-22 20:34:37 | 只看該作者
8#
發(fā)表于 2025-3-22 21:36:10 | 只看該作者
9#
發(fā)表于 2025-3-23 04:12:21 | 只看該作者
Generalized Nash Equilibrium Problems, Bilevel Programming and MPEC
10#
發(fā)表于 2025-3-23 07:18:18 | 只看該作者
Book 2017 solution set mapping of a parametric optimization problem. Chapter 2 describes a constraint qualification to MPECs considered as an application of calmness concept of multifunctions and is used to derive M-stationarity conditions for MPEC. Chapter 3 discusses the first- and second-order optimality
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卢湾区| 崇阳县| 屯昌县| 盘山县| 台州市| 盐城市| 漳平市| 疏勒县| 普定县| 邹城市| 舞钢市| 尉氏县| 米林县| 甘南县| 桂东县| 玛多县| 文水县| 巩义市| 垫江县| 银川市| 紫阳县| 阜平县| 兴城市| 石城县| 兴文县| 萨嘎县| 治多县| 文昌市| 微山县| 翼城县| 常州市| 法库县| 武邑县| 玉屏| 衡南县| 石门县| 嫩江县| 凤冈县| 临猗县| 济阳县| 鹰潭市|