找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Multiresolution Analyses; Kathy D. Merrill Book 2018 Springer Nature Switzerland AG 2018 Generalized Multiresolution Analysis.

[復(fù)制鏈接]
樓主: DUBIT
21#
發(fā)表于 2025-3-25 03:24:21 | 只看該作者
2296-5009 rspective. Familiarity with harmonic analysis and operator theory will be helpful to the reader, though the only prerequisite is graduate level experience with real and functional analysis..978-3-319-99174-0978-3-319-99175-7Series ISSN 2296-5009 Series E-ISSN 2296-5017
22#
發(fā)表于 2025-3-25 08:29:47 | 只看該作者
Book 2018these lecture notes provide the tools and framework for using GMRAs to extend results from classical wavelet analysis to a more general setting.?.Beginning with the basic properties of GMRAs, the book goes on to explore the multiplicity and dimension functions of GMRA, wavelet sets, and generalized
23#
發(fā)表于 2025-3-25 14:35:17 | 只看該作者
2296-5009 ons of wavelet sets.Facilitates an abstract understanding ofThis monograph presents the first unified exposition of generalized multiresolution analyses. Expanding on the author’s pioneering work in the field, these lecture notes provide the tools and framework for using GMRAs to extend results from
24#
發(fā)表于 2025-3-25 18:01:55 | 只看該作者
Contemporary Brain Research in Chinafor .?>?0, and thus representations of . there as well. The invariance of . in turn implies the invariance of .?=?.???., where the representation of . is useful in proving the existence of orthonormal or Parseval wavelets. In this chapter we explore results that follow from analyzing these representations of ..
25#
發(fā)表于 2025-3-25 20:35:20 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:37 | 只看該作者
27#
發(fā)表于 2025-3-26 06:12:36 | 只看該作者
Fractal Spaces, to Hausdorff measure extended to this enlarged set. We describe the Dutkay/Jorgensen construction on the spaces associated with the ordinary Cantor set and with other fractals, the use of generalized filters to build wavelets, and a version of a Fourier transform on this space due to Dutkay.
28#
發(fā)表于 2025-3-26 10:15:28 | 只看該作者
https://doi.org/10.1057/9780230227859to construct abstract GMRA’s from multiplicity functions. Finally we present a technique that uses direct sums to find a classifying set for all GMRA’s with finite multiplicity function and Haar measure class.
29#
發(fā)表于 2025-3-26 13:15:08 | 只看該作者
Abstract Constructions of GMRAs,to construct abstract GMRA’s from multiplicity functions. Finally we present a technique that uses direct sums to find a classifying set for all GMRA’s with finite multiplicity function and Haar measure class.
30#
發(fā)表于 2025-3-26 20:49:17 | 只看該作者
The Invariance of the Core Subspace,us enabling the use of tools from abstract harmonic analysis. Because of the required condition .???., the invariance of . also gives invariance of . for .?>?0, and thus representations of . there as well. The invariance of . in turn implies the invariance of .?=?.???., where the representation of .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
闸北区| 郸城县| 奉新县| 威海市| 信丰县| 神木县| 桂林市| 岫岩| 淮阳县| 渝中区| 宁化县| 绵竹市| 那曲县| 焉耆| 称多县| 高雄市| 绥德县| 利津县| 灯塔市| 利辛县| 洪洞县| 伽师县| 开阳县| 天台县| 舟曲县| 万年县| 尚义县| 南宁市| 东平县| 蓝山县| 额尔古纳市| 呼伦贝尔市| 定州市| 绥宁县| 竹北市| 浪卡子县| 巴彦县| 贵溪市| 桐柏县| 石屏县| 清苑县|