找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Multiresolution Analyses; Kathy D. Merrill Book 2018 Springer Nature Switzerland AG 2018 Generalized Multiresolution Analysis.

[復(fù)制鏈接]
查看: 26235|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:37:52 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Generalized Multiresolution Analyses
編輯Kathy D. Merrill
視頻videohttp://file.papertrans.cn/383/382236/382236.mp4
概述Offers the first unified treatment of generalized multiresolution analyses and wavelet theory.Illustrates the author’s pioneering constructions of wavelet sets.Facilitates an abstract understanding of
叢書名稱Applied and Numerical Harmonic Analysis
圖書封面Titlebook: Generalized Multiresolution Analyses;  Kathy D. Merrill Book 2018 Springer Nature Switzerland AG 2018 Generalized Multiresolution Analysis.
描述This monograph presents the first unified exposition of generalized multiresolution analyses. Expanding on the author’s pioneering work in the field, these lecture notes provide the tools and framework for using GMRAs to extend results from classical wavelet analysis to a more general setting.?.Beginning with the basic properties of GMRAs, the book goes on to explore the multiplicity and dimension functions of GMRA, wavelet sets, and generalized filters. The author’s constructions of wavelet sets feature prominently, with figures to illustrate their remarkably simple geometric form. The last three chapters exhibit extensions of wavelet theory and GMRAs to other settings. These include fractal spaces, wavelets with composite dilations, and abstract constructions of GMRAs beyond the usual setting of?.L.2.(?.n.)..This account of recent developments in wavelet theory will appeal to researchers and graduate students with an interest in multiscale analysis from a pure or applied perspective. Familiarity with harmonic analysis and operator theory will be helpful to the reader, though the only prerequisite is graduate level experience with real and functional analysis..
出版日期Book 2018
關(guān)鍵詞Generalized Multiresolution Analysis; Wavelets; Frames; Filters; Wavelet Sets; Crystallographic groups; Fr
版次1
doihttps://doi.org/10.1007/978-3-319-99175-7
isbn_softcover978-3-319-99174-0
isbn_ebook978-3-319-99175-7Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Generalized Multiresolution Analyses影響因子(影響力)




書目名稱Generalized Multiresolution Analyses影響因子(影響力)學(xué)科排名




書目名稱Generalized Multiresolution Analyses網(wǎng)絡(luò)公開度




書目名稱Generalized Multiresolution Analyses網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Multiresolution Analyses被引頻次




書目名稱Generalized Multiresolution Analyses被引頻次學(xué)科排名




書目名稱Generalized Multiresolution Analyses年度引用




書目名稱Generalized Multiresolution Analyses年度引用學(xué)科排名




書目名稱Generalized Multiresolution Analyses讀者反饋




書目名稱Generalized Multiresolution Analyses讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:28:05 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:26:00 | 只看該作者
Wavelet Sets,nctions, as well as directly from the consistency equation and from their geometric properties. We focus on simple wavelet sets, those that are a finite union of convex sets. We include wavelet sets for all expansive integer matrix dilations in ., and also consider multiwavelet sets and Parseval wavelet sets.
地板
發(fā)表于 2025-3-22 06:03:21 | 只看該作者
Generalized Filters,cal filters were defined in . in terms of Fourier transforms of these functions, and were used to build MRA’s and orthonormal wavelets with desirable properties. Generalized filters take advantage of the GMRA structure by using the unitary operator given by spectral multiplicity in place of the Fourier transform.
5#
發(fā)表于 2025-3-22 08:51:55 | 只看該作者
https://doi.org/10.1007/978-3-319-99175-7Generalized Multiresolution Analysis; Wavelets; Frames; Filters; Wavelet Sets; Crystallographic groups; Fr
6#
發(fā)表于 2025-3-22 13:06:33 | 只看該作者
978-3-319-99174-0Springer Nature Switzerland AG 2018
7#
發(fā)表于 2025-3-22 18:11:35 | 只看該作者
8#
發(fā)表于 2025-3-22 23:44:55 | 只看該作者
9#
發(fā)表于 2025-3-23 01:41:13 | 只看該作者
10#
發(fā)表于 2025-3-23 08:26:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郴州市| 荃湾区| 蓬安县| 龙门县| 安溪县| 兰州市| 黎川县| 循化| 宁化县| 毕节市| 潍坊市| 宝山区| 汝城县| 青浦区| 长海县| 余庆县| 屏南县| 晋中市| 晋城| 新竹县| 铅山县| 威信县| 泗洪县| 自治县| 闻喜县| 皋兰县| 金山区| 廉江市| 凤城市| 灵川县| 扎囊县| 区。| 庆元县| 云浮市| 弥渡县| 荥经县| 清河县| 泉州市| 万年县| 襄樊市| 施秉县|