找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Fractional Calculus; New Advancements and George A. Anastassiou Book 2021 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: interminable
31#
發(fā)表于 2025-3-27 00:50:39 | 只看該作者
Congenital Anomalies of the Penisgeneralized and iterated left and right: fractional Poincaré type inequalities, fractional Opial type inequalities and fractional Hilbert–Pachpatte inequalities. All these inequalities are very general having in their background Bochner type integrals. See also[.].
32#
發(fā)表于 2025-3-27 03:42:01 | 只看該作者
33#
發(fā)表于 2025-3-27 06:14:44 | 只看該作者
Iterated ,-Fractional Vector Bochner Integral Representation Formulae and Inequalities for Banach Sgeneralized and iterated left and right: fractional Poincaré type inequalities, fractional Opial type inequalities and fractional Hilbert–Pachpatte inequalities. All these inequalities are very general having in their background Bochner type integrals. See also[.].
34#
發(fā)表于 2025-3-27 10:12:58 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:26 | 只看該作者
36#
發(fā)表于 2025-3-27 20:38:26 | 只看該作者
37#
發(fā)表于 2025-3-28 01:48:31 | 只看該作者
Trigonometric Caputo Fractional Approximation of Stochastic Processes, derivatives of the engaged stochastic process, ., .. The impressive fact is that only two basic real Korovkin test functions assumptions, one of them trigonometric, are enough for the conclusions of our trigonometric fractional stochastic Korovkin theory. We give applications to stochastic Bernstei
38#
發(fā)表于 2025-3-28 05:45:09 | 只看該作者
39#
發(fā)表于 2025-3-28 06:18:46 | 只看該作者
40#
發(fā)表于 2025-3-28 12:19:07 | 只看該作者
Hilton P. Gottschalk,Michael S. Bednar generalized .-direct and iterated fractional derivatives, built in vector moduli of continuity. We treat wide and general classes of Banach space valued functions. We give applications to vectorial Bernstein operators. See also[.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
工布江达县| 双柏县| 霍邱县| 江津市| 汕头市| 溧阳市| 宁海县| 南开区| 马龙县| 卓尼县| 凌海市| 曲阳县| 当雄县| 惠水县| 西平县| 扬州市| 时尚| 施秉县| 贡觉县| 蕉岭县| 昆山市| 浪卡子县| 台东市| 攀枝花市| 丹棱县| 兴城市| 阳原县| 云阳县| 陈巴尔虎旗| 喀喇沁旗| 安塞县| 尼木县| 靖边县| 和静县| 临汾市| 佛冈县| 土默特右旗| 贡觉县| 靖西县| 黄龙县| 广安市|