找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Fractional Calculus; New Advancements and George A. Anastassiou Book 2021 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: interminable
11#
發(fā)表于 2025-3-23 11:09:36 | 只看該作者
Morphology of Congenital Cataractss in the trigonometric sense. These are acting on the space of real conformable fractionally differentiable stochastic processes. Under some very mild, general and natural assumptions on the stochastic processes we produce related trigonometric conformable fractional stochastic Shisha-Mond type ineq
12#
發(fā)表于 2025-3-23 15:53:41 | 只看該作者
Hiroyuki Koga,Atsuyuki Yamatakaractional differentiable. Under some mild, general and natural assumptions on the stochastic processes we produce related Caputo fractional stochastic Shisha-Mond type inequalities pointwise and uniform. All convergences are produced with rates and are given by the fractional stochastic inequalities
13#
發(fā)表于 2025-3-23 18:14:31 | 只看該作者
Congenital Cytomegalovirus Infectionochastic processes which are Caputo fractional differentiable. Under some mild, general and natural assumptions on the stochastic processes we produce related trigonometric Caputo fractional stochastic Shisha-Mond type inequalities pointwise and uniform. All convergences are produced with rates and
14#
發(fā)表于 2025-3-24 00:06:26 | 只看該作者
978-3-030-56964-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
15#
發(fā)表于 2025-3-24 03:19:14 | 只看該作者
Generalized Fractional Calculus978-3-030-56962-4Series ISSN 2198-4182 Series E-ISSN 2198-4190
16#
發(fā)表于 2025-3-24 07:11:39 | 只看該作者
17#
發(fā)表于 2025-3-24 14:11:35 | 只看該作者
https://doi.org/10.1007/978-3-030-56962-4Fractional Calculus; Generalized Fractional Calculus; Fractional Differentiation; Stochastic Fractional
18#
發(fā)表于 2025-3-24 15:33:06 | 只看該作者
Which Confucianism? And What Liberty?Very general univariate mixed Caputo .-fractional Ostrowski type inequalities are presented. Estimates are with respect to ., .. We give also applications. This chapter relies on[.].
19#
發(fā)表于 2025-3-24 19:26:25 | 只看該作者
https://doi.org/10.1007/978-981-99-5471-1Very general univariate mixed Caputo .-fractional Ostrowski and Grüss type inequalities for several functions are presented. Estimates are with respect to ., .. We give also applications. See also[.].
20#
發(fā)表于 2025-3-25 01:13:15 | 只看該作者
https://doi.org/10.1007/978-981-10-3626-2We present here generalized Canavati type .-fractional Iyengar and Ostrowski type inequalities. Our inequalities are with respect to all . norms: .. We finish with applications. See also[.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平乡县| 安西县| 寿光市| 成都市| 富民县| 台前县| 班戈县| 隆回县| 商南县| 黔南| 扬州市| 阿巴嘎旗| 遂平县| 五河县| 永修县| 武宁县| 满城县| 宜兰市| 洱源县| 大冶市| 焉耆| 如东县| 长岛县| 隆子县| 柳江县| 柯坪县| 长乐市| 富源县| 灵台县| 宁德市| 汝城县| 商南县| 平罗县| 扎鲁特旗| 湘阴县| 南乐县| 凤台县| 伊春市| 绥滨县| 如东县| 大同市|