找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Topology III; Paracompactness, Fun A. V. Arhangel’skii Book 1995 Springer-Verlag Berlin Heidelberg 1995 Compactness.Funktionenraum.

[復制鏈接]
查看: 7795|回復: 35
樓主
發(fā)表于 2025-3-21 16:33:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱General Topology III
副標題Paracompactness, Fun
編輯A. V. Arhangel’skii
視頻videohttp://file.papertrans.cn/383/382145/382145.mp4
叢書名稱Encyclopaedia of Mathematical Sciences
圖書封面Titlebook: General Topology III; Paracompactness, Fun A. V. Arhangel’skii Book 1995 Springer-Verlag Berlin Heidelberg 1995 Compactness.Funktionenraum.
描述The problem of metrization of topological spaces has had an enormous influence on the development of general topology. Singling out the basic topo- logical components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (pri- marily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and u- space, point-countable base, and uniform base. The method of covers has taken up a leading role in this classification. Of paramount significance in the applications of this method have been the properties of covers relating to the character of their elements (open covers, closed covers), the mutual dispo- sition of these elements (star finite, point finite, locally finite covers, etc. ), as well as the relations of refinement between covers (simple refinement, refine- ment with closure, combinatorial refinement, star and strong star refinement). On this basis a hierarchy of properties of paracompactness type has been sin- gled out, together with the classes of spaces corresponding to them, the most important of which is the class of
出版日期Book 1995
關(guān)鍵詞Compactness; Funktionenraum; Gleichm??ige Konvergenz; Kompaktheit; Mengenoperationen; Metrisierbarkeit; Pr
版次1
doihttps://doi.org/10.1007/978-3-662-07413-8
isbn_softcover978-3-642-08123-1
isbn_ebook978-3-662-07413-8Series ISSN 0938-0396
issn_series 0938-0396
copyrightSpringer-Verlag Berlin Heidelberg 1995
The information of publication is updating

書目名稱General Topology III影響因子(影響力)




書目名稱General Topology III影響因子(影響力)學科排名




書目名稱General Topology III網(wǎng)絡公開度




書目名稱General Topology III網(wǎng)絡公開度學科排名




書目名稱General Topology III被引頻次




書目名稱General Topology III被引頻次學科排名




書目名稱General Topology III年度引用




書目名稱General Topology III年度引用學科排名




書目名稱General Topology III讀者反饋




書目名稱General Topology III讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:32 | 只看該作者
Descriptive Set Theory and Topology,ve set theory is the study of the interdependence between the internal structure of sets and operations by means of which they are constructed starting from sets of a simpler nature. Analyses of operations over sets are also related to this line of approach. The general theory of operations over set
板凳
發(fā)表于 2025-3-22 02:37:43 | 只看該作者
Silicon Nanowires for DNA Sensingcal components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (primarily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and
地板
發(fā)表于 2025-3-22 07:43:10 | 只看該作者
Ordinary Differential Equationsve set theory is the study of the interdependence between the internal structure of sets and operations by means of which they are constructed starting from sets of a simpler nature. Analyses of operations over sets are also related to this line of approach. The general theory of operations over set
5#
發(fā)表于 2025-3-22 11:30:12 | 只看該作者
https://doi.org/10.1007/978-3-662-07413-8Compactness; Funktionenraum; Gleichm??ige Konvergenz; Kompaktheit; Mengenoperationen; Metrisierbarkeit; Pr
6#
發(fā)表于 2025-3-22 13:22:09 | 只看該作者
7#
發(fā)表于 2025-3-22 19:49:36 | 只看該作者
8#
發(fā)表于 2025-3-22 21:14:23 | 只看該作者
9#
發(fā)表于 2025-3-23 02:10:44 | 只看該作者
General Topology III978-3-662-07413-8Series ISSN 0938-0396
10#
發(fā)表于 2025-3-23 09:00:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乌鲁木齐县| 新和县| 屏东县| 贵德县| 中山市| 尼玛县| 都江堰市| 南溪县| 吉首市| 天长市| 苏尼特左旗| 千阳县| 丽水市| 贺兰县| 赣州市| 贵定县| 阳东县| 平乡县| 新兴县| 通渭县| 如东县| 永顺县| 同德县| 舒兰市| 咸宁市| 阿克苏市| 贵定县| 吴堡县| 台北县| 龙江县| 资溪县| 保康县| 崇左市| 湟源县| 阿拉善盟| 双城市| 宁津县| 泰安市| 柳江县| 梁平县| 山阳县|