找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Topology III; Paracompactness, Fun A. V. Arhangel’skii Book 1995 Springer-Verlag Berlin Heidelberg 1995 Compactness.Funktionenraum.

[復(fù)制鏈接]
查看: 7800|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:33:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱General Topology III
副標(biāo)題Paracompactness, Fun
編輯A. V. Arhangel’skii
視頻videohttp://file.papertrans.cn/383/382145/382145.mp4
叢書名稱Encyclopaedia of Mathematical Sciences
圖書封面Titlebook: General Topology III; Paracompactness, Fun A. V. Arhangel’skii Book 1995 Springer-Verlag Berlin Heidelberg 1995 Compactness.Funktionenraum.
描述The problem of metrization of topological spaces has had an enormous influence on the development of general topology. Singling out the basic topo- logical components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (pri- marily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and u- space, point-countable base, and uniform base. The method of covers has taken up a leading role in this classification. Of paramount significance in the applications of this method have been the properties of covers relating to the character of their elements (open covers, closed covers), the mutual dispo- sition of these elements (star finite, point finite, locally finite covers, etc. ), as well as the relations of refinement between covers (simple refinement, refine- ment with closure, combinatorial refinement, star and strong star refinement). On this basis a hierarchy of properties of paracompactness type has been sin- gled out, together with the classes of spaces corresponding to them, the most important of which is the class of
出版日期Book 1995
關(guān)鍵詞Compactness; Funktionenraum; Gleichm??ige Konvergenz; Kompaktheit; Mengenoperationen; Metrisierbarkeit; Pr
版次1
doihttps://doi.org/10.1007/978-3-662-07413-8
isbn_softcover978-3-642-08123-1
isbn_ebook978-3-662-07413-8Series ISSN 0938-0396
issn_series 0938-0396
copyrightSpringer-Verlag Berlin Heidelberg 1995
The information of publication is updating

書目名稱General Topology III影響因子(影響力)




書目名稱General Topology III影響因子(影響力)學(xué)科排名




書目名稱General Topology III網(wǎng)絡(luò)公開度




書目名稱General Topology III網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱General Topology III被引頻次




書目名稱General Topology III被引頻次學(xué)科排名




書目名稱General Topology III年度引用




書目名稱General Topology III年度引用學(xué)科排名




書目名稱General Topology III讀者反饋




書目名稱General Topology III讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:32 | 只看該作者
Descriptive Set Theory and Topology,ve set theory is the study of the interdependence between the internal structure of sets and operations by means of which they are constructed starting from sets of a simpler nature. Analyses of operations over sets are also related to this line of approach. The general theory of operations over set
板凳
發(fā)表于 2025-3-22 02:37:43 | 只看該作者
Silicon Nanowires for DNA Sensingcal components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (primarily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and
地板
發(fā)表于 2025-3-22 07:43:10 | 只看該作者
Ordinary Differential Equationsve set theory is the study of the interdependence between the internal structure of sets and operations by means of which they are constructed starting from sets of a simpler nature. Analyses of operations over sets are also related to this line of approach. The general theory of operations over set
5#
發(fā)表于 2025-3-22 11:30:12 | 只看該作者
https://doi.org/10.1007/978-3-662-07413-8Compactness; Funktionenraum; Gleichm??ige Konvergenz; Kompaktheit; Mengenoperationen; Metrisierbarkeit; Pr
6#
發(fā)表于 2025-3-22 13:22:09 | 只看該作者
7#
發(fā)表于 2025-3-22 19:49:36 | 只看該作者
8#
發(fā)表于 2025-3-22 21:14:23 | 只看該作者
9#
發(fā)表于 2025-3-23 02:10:44 | 只看該作者
General Topology III978-3-662-07413-8Series ISSN 0938-0396
10#
發(fā)表于 2025-3-23 09:00:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望奎县| 南陵县| 武安市| 出国| 曲阳县| 夏津县| 祁东县| 辽阳市| 南投市| 镇远县| 乐平市| 绥阳县| 涞源县| 乌拉特前旗| 高安市| 攀枝花市| 峨边| 池州市| 郎溪县| 汝阳县| 汉沽区| 盐城市| 龙口市| 惠水县| 瑞金市| 长白| 固阳县| 游戏| 屏东市| 昌都县| 固始县| 鄂托克前旗| 广德县| 彩票| 分宜县| 惠水县| 呼和浩特市| 资兴市| 荃湾区| 安远县| 永德县|