找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: General Theory of Irregular Curves; A. D. Alexandrov,Yu. G. Reshetnyak Book 1989 Kluwer Academic Publishers 1989 convergence.differentiabl

[復(fù)制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 11:41:15 | 只看該作者
12#
發(fā)表于 2025-3-23 17:12:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:28 | 只看該作者
Theory of a Turn for Curves on an ,-Dimensional Sphere,In the space . let us arbitrarily fix an origin .. The symbol Ω. will henceforth denote an .-dimensional sphere in the space . of radius equal to 1 and the centre ., . An arbitrary point . ∈ Ω. will be associated with the vector . ∈ . which is a radius-vector of the point . with respect to the point ..
14#
發(fā)表于 2025-3-24 00:51:20 | 只看該作者
Osculating Planes and Class of Curves with an Osculating Plane in the Strong Sense,Let us begin by making certain remarks concerning the notion of orientation for the case of two-dimensional planes in ..
15#
發(fā)表于 2025-3-24 05:11:49 | 只看該作者
Torsion of a Curve in a Three-Dimensional Euclidean Space,Studying a turn of a curve employing the integro-geometrical relations obtained above, required some preliminary considerations of the notion of a turn of a curve lying in one straight line. In an analogous way, studying a torsion of a spatial curve is based on considerations referring to plane curves.
16#
發(fā)表于 2025-3-24 10:10:40 | 只看該作者
https://doi.org/10.1007/978-94-009-2591-5convergence; differentiable manifold; integral; manifold; polygon
17#
發(fā)表于 2025-3-24 12:58:49 | 只看該作者
18#
發(fā)表于 2025-3-24 18:25:09 | 只看該作者
https://doi.org/10.1007/978-3-658-18708-8oints, i.e., a finite sequence of the points of ., such that . ≤ . ≤ .. Let us set .. The least upper boundary of the quantity s(.) on the set of all chains of the curve . is called a length of the curve . and is denoted as s(.). The curve . is termed rectifiable if its length is finite.
19#
發(fā)表于 2025-3-24 22:59:29 | 只看該作者
General Notion of a Curve,chet. Here we are going to dwell in detail on the definition of a curve with the aim of clarifying certain peculiarities that are important while discussing the theory of curves, and of presenting the definition of a curve in a more geometrical form as compared to the classical definition by M. Frechet.
20#
發(fā)表于 2025-3-25 00:18:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐安县| 临安市| 阿瓦提县| 东源县| 惠州市| 葵青区| 含山县| 汾西县| 凤台县| 景宁| 十堰市| 恩平市| 瓦房店市| 康保县| 汉源县| 炎陵县| 清苑县| 茶陵县| 叶城县| 建德市| 石屏县| 五寨县| 湛江市| 永平县| 宾阳县| 山东| 绍兴县| 龙州县| 青河县| 泰州市| 正阳县| 萨迦县| 集安市| 鹤峰县| 甘肃省| 沂水县| 石河子市| 无为县| 鸡东县| 沂源县| 锦屏县|