找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: General Theory of Irregular Curves; A. D. Alexandrov,Yu. G. Reshetnyak Book 1989 Kluwer Academic Publishers 1989 convergence.differentiabl

[復(fù)制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 11:41:15 | 只看該作者
12#
發(fā)表于 2025-3-23 17:12:49 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:28 | 只看該作者
Theory of a Turn for Curves on an ,-Dimensional Sphere,In the space . let us arbitrarily fix an origin .. The symbol Ω. will henceforth denote an .-dimensional sphere in the space . of radius equal to 1 and the centre ., . An arbitrary point . ∈ Ω. will be associated with the vector . ∈ . which is a radius-vector of the point . with respect to the point ..
14#
發(fā)表于 2025-3-24 00:51:20 | 只看該作者
Osculating Planes and Class of Curves with an Osculating Plane in the Strong Sense,Let us begin by making certain remarks concerning the notion of orientation for the case of two-dimensional planes in ..
15#
發(fā)表于 2025-3-24 05:11:49 | 只看該作者
Torsion of a Curve in a Three-Dimensional Euclidean Space,Studying a turn of a curve employing the integro-geometrical relations obtained above, required some preliminary considerations of the notion of a turn of a curve lying in one straight line. In an analogous way, studying a torsion of a spatial curve is based on considerations referring to plane curves.
16#
發(fā)表于 2025-3-24 10:10:40 | 只看該作者
https://doi.org/10.1007/978-94-009-2591-5convergence; differentiable manifold; integral; manifold; polygon
17#
發(fā)表于 2025-3-24 12:58:49 | 只看該作者
18#
發(fā)表于 2025-3-24 18:25:09 | 只看該作者
https://doi.org/10.1007/978-3-658-18708-8oints, i.e., a finite sequence of the points of ., such that . ≤ . ≤ .. Let us set .. The least upper boundary of the quantity s(.) on the set of all chains of the curve . is called a length of the curve . and is denoted as s(.). The curve . is termed rectifiable if its length is finite.
19#
發(fā)表于 2025-3-24 22:59:29 | 只看該作者
General Notion of a Curve,chet. Here we are going to dwell in detail on the definition of a curve with the aim of clarifying certain peculiarities that are important while discussing the theory of curves, and of presenting the definition of a curve in a more geometrical form as compared to the classical definition by M. Frechet.
20#
發(fā)表于 2025-3-25 00:18:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永胜县| 武宣县| 武穴市| 开原市| 合阳县| 临高县| 简阳市| 德州市| 邳州市| 福安市| 咸阳市| 都匀市| 平谷区| 赤壁市| 陈巴尔虎旗| 吉林市| 富川| 丰顺县| 肥城市| 镇安县| 兴国县| 九寨沟县| 仙游县| 陇南市| 镇赉县| 遵义市| SHOW| 凌源市| 浦江县| 宜昌市| 石河子市| 东乡县| 安岳县| 垫江县| 贵阳市| 东兴市| 中宁县| 庄河市| 菏泽市| 濮阳县| 宜宾市|