找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Theory of Irregular Curves; A. D. Alexandrov,Yu. G. Reshetnyak Book 1989 Kluwer Academic Publishers 1989 convergence.differentiabl

[復(fù)制鏈接]
查看: 54294|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:09:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱General Theory of Irregular Curves
編輯A. D. Alexandrov,Yu. G. Reshetnyak
視頻videohttp://file.papertrans.cn/383/382134/382134.mp4
叢書名稱Mathematics and its Applications
圖書封面Titlebook: General Theory of Irregular Curves;  A. D. Alexandrov,Yu. G. Reshetnyak Book 1989 Kluwer Academic Publishers 1989 convergence.differentiabl
出版日期Book 1989
關(guān)鍵詞convergence; differentiable manifold; integral; manifold; polygon
版次1
doihttps://doi.org/10.1007/978-94-009-2591-5
isbn_softcover978-94-010-7671-5
isbn_ebook978-94-009-2591-5Series ISSN 0169-6378
issn_series 0169-6378
copyrightKluwer Academic Publishers 1989
The information of publication is updating

書目名稱General Theory of Irregular Curves影響因子(影響力)




書目名稱General Theory of Irregular Curves影響因子(影響力)學(xué)科排名




書目名稱General Theory of Irregular Curves網(wǎng)絡(luò)公開度




書目名稱General Theory of Irregular Curves網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱General Theory of Irregular Curves被引頻次




書目名稱General Theory of Irregular Curves被引頻次學(xué)科排名




書目名稱General Theory of Irregular Curves年度引用




書目名稱General Theory of Irregular Curves年度引用學(xué)科排名




書目名稱General Theory of Irregular Curves讀者反饋




書目名稱General Theory of Irregular Curves讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:12:37 | 只看該作者
Rosa Maria Vitale,Pietro Amodeochet. Here we are going to dwell in detail on the definition of a curve with the aim of clarifying certain peculiarities that are important while discussing the theory of curves, and of presenting the definition of a curve in a more geometrical form as compared to the classical definition by M. Frec
板凳
發(fā)表于 2025-3-22 04:01:29 | 只看該作者
https://doi.org/10.1007/978-3-658-18708-8oints, i.e., a finite sequence of the points of ., such that . ≤ . ≤ .. Let us set .. The least upper boundary of the quantity s(.) on the set of all chains of the curve . is called a length of the curve . and is denoted as s(.). The curve . is termed rectifiable if its length is finite.
地板
發(fā)表于 2025-3-22 08:15:18 | 只看該作者
,Solution of Algebraic Systems of?Equations, Crofton, but it was in the papers by W. Blaschke and co-workers, published in the ‘thirties, that integral geometry was formulated as an independent branch of research. This field of geometry proved to be quite viable and is still attracting the attention of scholars. For a description of the histo
5#
發(fā)表于 2025-3-22 09:26:57 | 只看該作者
6#
發(fā)表于 2025-3-22 15:17:48 | 只看該作者
7#
發(fā)表于 2025-3-22 18:53:52 | 只看該作者
Governing Equations of Fluid Dynamicsnce (. ? 1) numbers of ., ., ... , . of the curvatures at the point of the curve. Let us set . where integration is carried out with respect to the arc length. The functions obtained in this way will be called integral curvatures of the curve. There arises a problem — to give such a definition of th
8#
發(fā)表于 2025-3-22 21:29:58 | 只看該作者
Multi-Phase Models in Civil Engineering,The definition of a tangent to a curve given below is essentially the same as that given in courses of differential geometry.
9#
發(fā)表于 2025-3-23 02:19:45 | 只看該作者
10#
發(fā)表于 2025-3-23 06:01:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
那曲县| 中阳县| 河津市| 泽州县| 正宁县| 绍兴县| 宁远县| 商都县| 青川县| 吉林省| 长汀县| 吐鲁番市| 昂仁县| 元氏县| 五寨县| 依安县| 石狮市| 遂川县| 老河口市| 五大连池市| 舞钢市| 勐海县| 六盘水市| 宁陕县| 邛崃市| 隆昌县| 双牌县| 大名县| 永寿县| 确山县| 德安县| 临城县| 临沭县| 浑源县| 宁明县| 连山| 兴宁市| 开化县| 泽普县| 乐陵市| 常德市|