找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity and Gravitational Waves; Essentials of Theory Sanjeev Dhurandhar,Sanjit Mitra Textbook 2022 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: GRASS
21#
發(fā)表于 2025-3-25 04:09:36 | 只看該作者
22#
發(fā)表于 2025-3-25 09:49:09 | 只看該作者
Correction to: General Relativity and Gravitational Waves,
23#
發(fā)表于 2025-3-25 15:22:47 | 只看該作者
24#
發(fā)表于 2025-3-25 16:54:23 | 只看該作者
Tensor Algebra, be used to raise and lower indices of tensors. This is explicitly demonstrated in an oblique Cartesian coordinate system to connect a contravariant vector with a covariant vector and regard it as the same entity (isomorphic) with contravariant and covariant components.
25#
發(fā)表于 2025-3-25 21:51:50 | 只看該作者
26#
發(fā)表于 2025-3-26 02:02:56 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:23 | 只看該作者
Gravitational Wave Data Analysis,posed in a differential geometric framework. We show how a metric can be defined on the signal manifold and can be used to place templates in the parameter space in an efficient way. The Fisher information matrix and the Rao-Cramer bound are discussed in the context of estimation of errors in parame
28#
發(fā)表于 2025-3-26 12:24:06 | 只看該作者
Textbook 2022irst time. Both authors have been teaching the course in various forms for a few decades and have designed the book as a one stop book at basic level including derivations and exercises...A spectacular prediction of general relativity is gravitational waves. Gravitational waves were first detected b
29#
發(fā)表于 2025-3-26 14:41:10 | 只看該作者
30#
發(fā)表于 2025-3-26 19:08:19 | 只看該作者
,Einstein’s Equations,portant cases such as dust and perfect fluid. The chapter ends with the Newtonian limit of Einstein’s equations in the low velocity, weak field limit, where it is shown that Einstein’s gravity goes over to Newtonian gravity. When obtaining this limit the constant . relating the two sides of Einstein’s equations is determined.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富民县| 武冈市| 阳东县| 罗平县| 沁阳市| 师宗县| 湾仔区| 合肥市| 南华县| 城市| 谷城县| 宁陕县| 清徐县| 金寨县| 河池市| 白银市| 高阳县| 肥东县| 建阳市| 临泉县| 邵阳市| 夹江县| 琼结县| 绥阳县| 桂平市| 防城港市| 从江县| 盐津县| 天峨县| 东安县| 南漳县| 徐汇区| 高碑店市| 乐至县| 彰武县| 得荣县| 耒阳市| 苏尼特左旗| 枞阳县| 宁蒗| 莎车县|