找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity and Gravitational Waves; Essentials of Theory Sanjeev Dhurandhar,Sanjit Mitra Textbook 2022 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: GRASS
11#
發(fā)表于 2025-3-23 10:19:30 | 只看該作者
12#
發(fā)表于 2025-3-23 14:35:54 | 只看該作者
13#
發(fā)表于 2025-3-23 19:02:06 | 只看該作者
The Equivalence Principle,We describe the broad physical concepts of the weak and strong equivalence principles, that form the foundation of the general theory of relativity. We make use of some of the well known thought experiments to explain and elaborate on these concepts.
14#
發(fā)表于 2025-3-23 22:51:29 | 只看該作者
15#
發(fā)表于 2025-3-24 04:19:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:24:03 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:35 | 只看該作者
Textbook 2022advanced topics covered in this book is the fundamentals of gravitational wave data analysis, filling a gap in textbooks on general relativity. The topic blends smoothly with other chapters in the book not only because of the common area of research, but it uses similar differential geometric and al
18#
發(fā)表于 2025-3-24 15:31:08 | 只看該作者
Jean-Luc Brylinski,Steven Zucker be used to raise and lower indices of tensors. This is explicitly demonstrated in an oblique Cartesian coordinate system to connect a contravariant vector with a covariant vector and regard it as the same entity (isomorphic) with contravariant and covariant components.
19#
發(fā)表于 2025-3-24 20:05:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:05:28 | 只看該作者
Complex Numbers in Trigonometric Form,eed to consider only the weak field approximation and not slow motion—after all the GW, as we will show later, travel at the speed .. In order to make the weak field approximation we need to linearise Einstein’s equations. Note that since this is not the Newtonian approximation, because we allow spe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥西县| 广饶县| 徐汇区| 长丰县| 临泉县| 德格县| 济宁市| 镇赉县| 汪清县| 阿鲁科尔沁旗| 都昌县| 自治县| 青田县| 科技| 康保县| 晋城| 玛多县| 白玉县| 阿拉善盟| 高密市| 裕民县| 谢通门县| 田阳县| 靖江市| 高尔夫| 临泉县| 武鸣县| 中卫市| 竹山县| 张掖市| 张家港市| 浑源县| 水城县| 镇赉县| 聊城市| 临朐县| 台北市| 渭南市| 吉安县| 靖江市| 绍兴县|